کمال غریبی, مهدی, زمزمیان, سید امیرحسین, هرمزی, فرامرز. (1395). بررسی تجربی پایداری نانوسیال اکسید مس بر پایه آب یون زدایی شده و دستیابی به شرایط بهینه پایداری. نشریه مهندسی مکانیک امیرکبیر, 48(1), 17-30. doi: 10.22060/mej.2016.365
مهدی کمال غریبی; سید امیرحسین زمزمیان; فرامرز هرمزی. "بررسی تجربی پایداری نانوسیال اکسید مس بر پایه آب یون زدایی شده و دستیابی به شرایط بهینه پایداری". نشریه مهندسی مکانیک امیرکبیر, 48, 1, 1395, 17-30. doi: 10.22060/mej.2016.365
کمال غریبی, مهدی, زمزمیان, سید امیرحسین, هرمزی, فرامرز. (1395). 'بررسی تجربی پایداری نانوسیال اکسید مس بر پایه آب یون زدایی شده و دستیابی به شرایط بهینه پایداری', نشریه مهندسی مکانیک امیرکبیر, 48(1), pp. 17-30. doi: 10.22060/mej.2016.365
کمال غریبی, مهدی, زمزمیان, سید امیرحسین, هرمزی, فرامرز. بررسی تجربی پایداری نانوسیال اکسید مس بر پایه آب یون زدایی شده و دستیابی به شرایط بهینه پایداری. نشریه مهندسی مکانیک امیرکبیر, 1395; 48(1): 17-30. doi: 10.22060/mej.2016.365
بررسی تجربی پایداری نانوسیال اکسید مس بر پایه آب یون زدایی شده و دستیابی به شرایط بهینه پایداری
1دانشجوی کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه سمنان
2استادیار، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، کرج
3دانشیار، دانشکده مهندسی شیمی، دانشگاه سمنان
چکیده
در این تحقیق، پایداری نانوسیال اکسید مس با غلظت وزنی 1/0 درصد بر پایه آب یون زدایی شده به طور تجربی مورد بررسی قرار گرفته است. آزمایش ها با هدف بررسی تأثیر عوامل سرعت دورانی و مدت زمان پخش نانوذرات در سیال پایه، زمان موج دهی فراصوت، نوع و غلظت مواد فعال سطحی و مقدار اسیدیته بر پایداری نانوسیال و دستیابی به یک شرایط بهینه پایداری طراحی شده اند. نتایج از لحاظ آماری و با استفاده از روش تاگوچی در نرم افزار Qualitek-4تحلیل شده اند. علاوه بر آن، میزان پایداری نانوسیالات به کمک بررسی تصاویر ته- نشینی و همچنین روش پتانسیل زتا مورد ارزیابی قرار گرفته است. نتایج نشان داده اند که استفاده از ماده فعال سطحی سدیم دودسیل- سولفات با غلظت وزنی 1/0 درصد، یک ساعت موج دهی فراصوت با استفاده از دستگاه موج دهی فراصوت میله ای و تنظیم مقدار اسیدیته برابر 72/10، بهترین شرایط را برای پخش نانوذرات اکسید مس در آب یون زدایی شده فراهم آورده اند. در این شرایط، نانوسیال ساخته شده برای مدت زمان حداقل 40 روز بدون مشاهده هیچ اثری از ته نشینی نانوذرات، پایداری خود را حفظ نموده است.
In this study, the stability of deionized water based copper oxide nanofluid with weight concentration of 0.1 percent is investigated experimentally. The experiments are designed to investigate the influence of rotational speed and dispersion time of nanoparticles in the base fluid, ultrasonic waving time, type and concentration of surfactants and pH on the nanofluid stability and achieve to an optimal stability condition. The results are statistically analysed using Taguchi method by implementing Qualitek-4 software. Furthermore, nanofluid stability is evaluated by investigation of sedimentation photographs also, zeta potential method. The results showed that using sodium dodecyl sulphate with weight concentration of 0.1 percent, ultrasonic waving by ultrasonic probe device for an hour and changing the pH to 10.72, provide the best conditions for dispersing copper oxide nanoparticles in deionized water. In this condition, prepared nanofluid is maintained it̕s stability with no trace of sedimentation of nanoparticles for forty days at least.
[13] Emami Meibodi, M., Vafaie-Sefti, M., Rashidi, A., Amrollahi, A., Tabasi, M., Sid Kalal, H., “The role
of different parameters on the stability and thermal conductivity of carbon nanotube-water nanofluids”,
International Communication in Heat and Mass Transfer, Vol. 37, pp. 319- 323, 2010.
[14] Tajik, B., Abbassi, A., Saffar-Avval, M., Ahmadi Najafabadi, M., “Ultrasonic properties of suspensions
of TiO2 and Al2O3 nanoparticles in waterˮ, Powder Technology, Vol. 217, pp. 171- 176, 2012.
[15] Mondragon, R., Enrique Julia, J., Barba, A., Jarque., A., “Characterization of silica-water nanofluids
dispersed with an ultrasound probe, a study of their physical properties and stabilityˮ, Powder Technology,
Vol. 224, pp. 138- 146, 2012.
[16] Hwang, Y., Lee, J., Jeong, Y., Cheong, S., Ahn, Y.,Kim Soo, H., “Production and dispersion stability of
nanoparticles in nanofluidsˮ, Powder Technology, Vol.186, pp. 145- 153, 2008.
[17] Halelfadl, S., Estelle, P., Aladag, B., Doner, N.,Mare, T., “Viscosity of carbon nanotubes water
based nanofluids, Influence of concentration and temperatureˮ, International Journal of Thermal
Science, Vol. 71, pp. 111- 117, 2013.
[18] Wang, D., Song, C., Hu, Z., Zhou, X., “Synthesis of silver nanoparticles with flake-like shapesˮ, Materials
Letters, Vol. 59, pp. 1760- 1763, 2005.
[19] Karthik, V., Ghosh, S., Pabi, S.K., “Effects of bulk stoichiometry and surface state of NiAl nano-dispersoid
on the stability and heat transfer characteristics of water based nanofluidˮ, Experimental Thermal and
Fluid Science, Vol. 48, pp. 156- 162, 2013.
[20] Xuan, Y., Li, Q., “Investigation on convection heat transfer and flow features of nanofluidsˮ, Heat Transfer
Journal, Vol. 125, pp. 151, 2005.
[21] Sato, M., Abe, Y., Urita, Y., Di Paola, R., Cecere, A., Savino, R., “Thermal performance of selfrewetting
fluid heat pipe containing dilute solutions of polymer-capped silver nanoparticles synthesized by microwave”, In Proceedings of ITP, Polyol Process,2009.
[22] Lee, K., Hwang, Y.H., Cheong., S., Kwon, L., Kim, S., Lee, J., “Performance evaluation of nanolubricants
of fullerene nanoparticles in refrigeration mineral oil”,Curr. Appl. Phys, Vol. 9, pp. 128- 131, 2009.
[23] Montgomery, D.C., “Design of experiments”, New York, pp. 225- 364, 1995.
[24] Kim, N., Park, S., Lim. S., Chun, W., “A study on characteristics of carbon nanofluids at the room
temperature”, International communication in Heat and Mass Transfer, Vol. 38, pp. 313- 318, 2011.
[25] Roy, R.K., “A primer on the Taguchi method”, Van Nostrand Reinhold, pp. 23- 27, 1990.