بررسی ارتعاش آزاد ورق کامپوزیتی تقویت شده با نانو لوله‌‌های کربنی به همراه لایه مگنتوالکتروالاستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران

چکیده

چکیده: در این تحقیق، ارتعاش آزاد ورق مستطیلی هوشمند دولایه‌ای متشکل از یک لایه کامپوزیتی تقویت شده با نانولوله‌های کربنی تک جداره و یک لایه هوشمند چندفازی مگنتوالکتروالاستیک بررسی شده است. نانولوله‌های کربن به صورت یکنواخت در راستای ضخامت لایه کامپوزیتی توزیع شده‌اند. دمای محیط به صورت یکنواخت تغییر می‌کند. ورق بر روی تکیه گاه ساده قرار گرفته شده و تحت بارگذاری‌های الکتریکی و مغناطیسی می‌باشد. از نظریۀ برشی مرتبه اول ورق‌ها برای تعیین معادلات حرکت ورق استفاده شده و از قوانین گاوس برای حالت‌های الکترواستاتیک و مگنتواستاتیک برای مدل سازی رفتار مگنتوالکتریک استفاده شده است. با بیان متغیرهای تعمیم یافته ورق به صورت سری فوریه دوگانه و استفاده از روابط تعامد توابع مثلثاتی، معادلات دیفرانسیل جزئی به دستگاه معادله جبری برحسب بسامد طبیعی ورق تبدیل گردیده‌اند و رابطه‌ای تحلیلی برای بسامد طبیعی اصلی ورق به دست آمده است. پس از صحه‌گذاری مدل پیشنهادی، مثال‌هایی برای بررسی اثرات پارامترهای مختلف بر روی پاسخ ارتعاش آزاد این ورق هوشمند ارائه شده‌‎اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

On the Free Vibration Analysis of a CNT-Reinforced Plate Bonded to a Magnetoelectroelastic Layer

نویسندگان [English]

  • S. Razavi
  • A. Shooshtari
Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

ABSTRACT: In this study, free vibration of a two-layered smart rectangular plate composed of a singlewalled carbon nanotube-reinforced layer and a magnetoelectroelastic layer are investigated. Carbon nanotubes are distributed uniformly along the thickness of the composite layer. The temperature of the environment changes uniformly. The plate is simply-supported and subjected to electric and magnetic loadings. First-order shear deformation theory is used to determine the equations of motion of the plate, and Gauss’s laws for electrostatics and magnetostatics are used to model the magnetoelectric behavior of the plate. By defining the generalized displacements of the plate in double Fourier series form and then by using orthogonality principle of trigonometric functions, the partial differential equations of motion are transformed into a set of algebraic equations in terms of the natural frequency of the plate. Therefore, an analytical relation is obtained for the fundamental natural frequency. After validation of the proposed
model, some examples are presented to investigate the effects of several parameters on the free vibration response of this smart plate.

کلیدواژه‌ها [English]

  • free vibration
  • Rectangular plate
  • Carbon nanotube-reinforced composite
  • Magnetoelectroelastic layer
[1] K.M. Liew, Z.X. Lei, L.W. Zhang , Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Composite Structures, 120(1)(2015) 90-97.
[2] C.P. Wu, H.Y. Li, Three-dimensional free vibration analysis of functionally graded carbon nanotubereinforced composite plates with various boundary conditions, Journal of Vibration and Control, 22(1)(2016) 89-107.
[3] L.W. Zhang, W.C. Cui, K.M. Liew, Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges,International Journal of Mechanical Sciences, 103(1)(2015) 9-21.
[4] R. Moradi-Dastjerdi, M. Foroutan, A. Pourasghar,Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Materials and Design, 44(1) (2013) 256-266.
[5] S. Natarajan, M. Haboussi, G. Manickam, Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets, Composite Structures,113(1) (2014) 197-207.
[6] H. Wu, S. Kitipornchai, J. Yang, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, International Journal of Structural Stability and Dynamics, 15(7) (2015) 1540011.
[7] K. Mehar, S.K. Panda, A. Dehengia, V.R. Kar, Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,Journal of Sandwich Structures and Materials, 18(2)(2016) 151-173.
[8] Z.X. Wang, H.S. Shen, Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets, Composites Part B: Engineering, 43(2)(2012) 411-421.
[9] A. Alibeigloo, Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity, European Journal of Mechanics A/Solids,44(1) (2014) 104-115.
[10] L.W. Zhang, Z.G. Song, K.M. Liew, Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches, Composites Part B:Engineering, 85(1) (2016) 140-149.
[11] A. Sharma, A. Kumar, C.K. Susheel, R. Kumar, Smart damping of functionally graded nanotube reinforced composite rectangular plates, Composite Structures, 155(1) (2016) 29-44.
[12] E. Pan, Exact solution for simply supported and multilayered magneto-electro-elastic plates, Journal of Applied Mechanics, 68(4) (2001) 608-618.
[13] E. Pan, P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, Journal of Sound and Vibration, 252(3) (2002) 429-442.
[14] M.F. Liu, T.P. Chang, Closed form expression for the vibration problem of a transversely isotropic magnetoelectro-elastic plate, Journal of Applied Mechanic, 77(2)(2010) 024502.
[15] L. Xin, Z. Hu, Free vibration of simply supported and multilayered magneto-electro-elastic plates, Composite Structures, 121(1) (2015) 344-350.
[16] A. Shooshtari, S. Razavi, Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear eformation theory, Latin American Journal of Solids and Structures, 13(3) (2016) 554-572.
[17] M. Vaezi, M.M. Shirbani, A. Hajnayeb, Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads, Physica E: Low-dimensional Systems and Nanostructures, 75(1) (2016) 280-286.
[18] L.L. Ke, Y.S. Wang, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E: Low-dimensional Systems and Nanostructures, 63(1) (2014) 52-61.
[19] Y.S. Li, P. Ma, W. Wang, Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory, Journal of Intelligent Material Systems and Structures, 27(9) (2016) 1139-1149.
[20] A.A. Jandaghian, O. Rahmani, Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation, Smart Materials and Structures,25(3) (2016) 035023.
[21] L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30(4) (2014) 516-525.
[22] Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Composite Structures, 111(1) (2014) 522-529.
[23] L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, The size-dependent vibration of embedded magneto-electroelastic cylindrical nanoshells, Smart Materials and Structures, 23(12) (2014) 125036.
[24] R. Ansari, R. Gholami, H. Rouhi, Size-dependent nonlinear forced vibration analysis of magneto-electrothermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity, Composite Structures, 126(1) (2015)216-226.
[25] A. Farajpour, M.R. Hairi Yazdi, A. Rastgoo, M.Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electroelastic nanoplates, Composite Structures, 140(1) (2016)323-336.
[26] P. Zhu, Z.X. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94(4)(2012) 1450-1460.
[27] Y. Ootao, Y. Tanigawa, Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply, Composite Structures, 68(4)(2005) 471-480.
[28] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2nd Edition, CRC Press,2004.
[29] Y. Li, J. Zhang, Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation, Smart Materials and Structures, 23(2) (2014)025002.
[30] Z.X. Wang, H.S. Shen, Nonlinear vibration of nanotubereinforced composite plates in thermal environments,Computational Materials Science, 50(8) (2011) 2319-2330.
[31] J.M.S. Moita, C.M.M. Soares, C.A.M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Composite Structures, 91(4) (2009)421-426.