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Active fault tolerant control based on adaptive back-stepping nonsingular fast integral 
terminal sliding mode approach 
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ABSTRACT: In this paper, finite-time active fault tolerant control based on adaptive back-stepping 
nonsingular fast integral terminal sliding mode control is proposed to control a lower limb exoskeleton 
in the presence of actuator fault. In order to detect, isolate and accommodate the actuator fault, a third-
order super twisting sliding mode observer is used. To eliminate the chattering of conventional sliding 
mode, supper twisting sliding mode algorithm is applied, which leads to finite-time convergence and 
high precision in tracking the desired trajectories. Back-stepping term guarantees global stability based 
on Lyapunov theory. Upper limb motion is used to provide stability to robot’s motion based on zero-
moment point criterion. In order to attain maximum stability based on zero-moment point, minimize 
error in tracking the desired trajectories, increase the tolerance of the controller against actuator fault, 
controller, observer and upper limb trajectory parameters are optimally tuned based on harmony search 
algorithm. Performance of the proposed controller is compared with the performance of sliding mode 
controller with/without fault information. Simulation results reveal the effectiveness of the proposed 
controller in the presence of actuator fault, uncertainty and disturbance in comparison with sliding mode 
controller.
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1- Introduction
Exoskeletons have been essentially employed to 

increase human physical performance in military purposes, 
rehabilitation and medical applications. Conformity with 
the human body and also control strategies applied to 
exoskeletons have immense impacts on the performance 
of these means [1]. To counteract the faults of the system, 
compensate for the effect of un-modeled dynamics, 
uncertainties and disturbances from the user and the 
environment, and to reduce the metabolic cost imposed 
on the user, choosing an appropriate control strategy for 
exoskeletons is of high importance. Sliding Mode Controller 
(SMC) is a robust approach which is developed in recent 
years [2]. Despite its robustness against uncertainties and 
disturbances, it suffers from low convergence rate, low 
performance against high rate disturbances, relying on the 
bounds of uncertainties and disturbances, and chattering 
phenomenon [3]. 

Fault-Tolerant Control (FTC) is developed to maintain 
system safety and an acceptable level of performance in 
the presence of faults [4]. Generally, FTC is categorized as 
Passive FTC (PFTC) and Active FTC (AFTC).  

Different approaches have been employed for fault 
detection and estimation in the context of nonlinear systems 
and robotics. The high order super-twisting observer used 

for fault detection and isolation offers two main advantages. 
I) Speed estimation without using filters, II) using the 
capabilities of high order SMC in identifying unknown 
inputs [5]. 

The main contribution of this paper is to design an adaptive 
FTC by combining adaptive back-stepping nonsingular 
fast terminal integral-type sliding mode controller and 
super twisting third-order observer for a 7-DOF lower 
limb exoskeleton. This controller offers high convergence, 
fast transient response, stability based on Lyapunov theory 
and eliminated chattering. To compensate for the effect of 
disturbances and uncertainties with unknown bounds an 
adaptive law is used. 

2- Problem Statement 
In this paper, an adaptive FTC based on back-stepping 

nonsingular fast terminal integral type SMC is designed to 
counteract the faults of the system, compensate the effect of 
un-modeled dynamics, uncertainties and disturbances from 
the user and the environment. For adaptive FTC, super-
twisting third-order observer is employed. Walking stability 
of the robot at each moment is studied utilizing ZMP criterion 
and to achieve maximum stability margin, the motion of the 
upper limb joint is used. 
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2- 1- Problem formulation
To reach a harmonious motion between the robot and 

the user, in this paper a 7-DOF mechanism is chosen whose 
joints are placed on the user’s hip, knee and ankle joints. the 
dynamic equation of the robotic expressed as Eq. (1) [2].
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where τ is the actuators torque, ( )M  , ( , )C    are the 
matrices of inertia moment, and centrifugal and 
gyroscopic effects,  ( )G  and ( )F   represent 
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Here, 
dq  denotes desired acceleration of robot joints. To 

design the controller based on backstepping method, 
new state variables are defined as [2]: 
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The back-stepping non-singular fast terminal integral-
type sliding mode control law is proposed as follows: 
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An adaptive back-stepping nonsingular fast integral type 
terminal sliding mode control law is proposed as: 
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To prove the stability of the proposed control law, 
Lyapunov function is considered as Eq. (6). 
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state space equations are written as:
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Thus, the proposed control law is asymptotically stable. 
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