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ABSTRACT: Since the maintenance and repairing costs of mechanical systems, such as structures and 
rotating machines are significantly high, one way to reduce these costs is to consider some approaches 
before any operational work to check for damages in such systems. In this study, a new method is 
presented for damage detection of offshore jacket structures in the presence of various uncertainties, 
such as modeling errors, measurement errors and environmental noises, based on the simulated model 
and intact state of the real model. In the proposed method, real intact structure data is used to update 
the simulated model parameters. Some parts of the signal that are not related to the nature of the system 
are removed using the complete ensemble empirical mode decomposition method. Frequency data is 
extracted from the vibrational signals using the frequency domain decomposition method. A deep auto-
encoder neural network is designed to learn the damage-sensitive features from the frequency data and 
to damage detection of the structure. In order to train the proposed deep network, frequency data of the 
simulated model and real intact state are used; then the frequency data of the real structure is used to test 
the proposed deep network. The results show that the proposed method is capable for damage detection 
of the offshore jacket structure with more accurate results than the other comparative methods.
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1- Introduction
Offshore jacket structures are the most general types of 

offshore structures and play an important role in shallow and 
medium waters in the oil and gas industry. In addition, they 
are used as jacket substructure for offshore wind turbines 
in deep water (30-60 m). Therefore, damage detection of 
offshore jacket structures is highly necessary in order to 
ensure their safety. 

In recent years, machine learning has been used as an 
effective tool for damage detection of mechanical systems. 
Artificial neural networks are a set of machine learning 
algorithms that are divided into two general categories; 
shallow neural networks and deep neural networks. In deep 
networks, the features are automatically extracted and the 
accuracy of these algorithms is higher than the shallow 
networks [1-2].

A new method for damage detection of mechanical 
systems is presented in this paper. The first aim of this paper 
is to provide a method for damage detection of mechanical 
systems in the presence of various uncertainties. One of 
the benefits of deep learning is that it can learn damage-
sensitive features from raw data in the presence of various 
uncertainties. Accordingly, the second aim of this paper is 
to design a deep auto-encoder network to learn the damage-
sensitive features from raw frequency data. Data collection 
in industrial environments is difficult and even impossible, 

and generally, only intact data is available [3]. Accordingly, 
the third aim of this paper is to train the proposed deep 
network based on the frequency data of simulated model 
and intact state of the real model, and then to evaluate the 
deep network with the frequency data of real model. In 
the proposed method, the simulated model parameters are 
updated based on the intact data of real model. Some parts 
of the vibration signals that are not related to the nature 
of the system are removed using the Complete Ensemble 
Empirical Mode Decomposition (CEEMD) method [4]. 
Frequency data is obtained from the vibration signals using 
the Frequency Domain Decomposition (FDD) method [5]. 
An offshore jacket structure model in the laboratory is used 
as a case study to evaluate the proposed method.

2- Methodology
In this section, at first, the simulated and laboratory 

models of the offshore jacket structure are described. The 
proposed algorithm for damage detection of the offshore 
jacket structure is then expressed.

2- 1-  Finite Element (FE) model of the offshore jacket 
structure

An initial three-dimensional finite element model of the 
offshore jacket structure is created using Abaqus software, 
taking into account the small deformations and linear 
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behavior of the system. The created finite element model in 
the intact state is shown in Fig. 1. The dimensions of the 
finite element model are created exactly according to the 
dimensions of the real structure (Fig. 2). The structure has 
five stories, all of which are horizontally braced and two 
middle stories are diagonally braced.

2- 2- Laboratory model of the offshore jacket structure
In this study, an offshore jacket structure model (Fig. 2) 

was designed and installed in the Tabriz University Modal and 
Vibration Analysis Laboratory. A shaker is used to produce an 
artificial excitation force. The shaker is connected to one of 
the vertical columns in the middle section of the third story 
using a ring-type fixture [6]. 12 Accelerometers are mounted 
on the structure to extract the dynamic responses. Fig. 3 shows 
the dynamic responses extracted using the 12 accelerometers 
mounted on the structure.

2- 3- The proposed damage detection algorithm
The major procedure of the proposed damage detection 

algorithm is listed as follows (see Fig. 4):
(a)	 Extracting the dynamic responses corresponding to 

different states of finite element and laboratory models.
(b)	 Data preprocessing and Finite element model 

updating [7].
(c)	 Selecting the Proper Intrinsic Mode Functions )

IMFs) using CEEMD method and signal reconstruction.
(d)	 Generating raw frequency data from dynamic 

responses using FDD method.
(e)	 Dividing the data into three parts, namely training 

data based on finite element model and the intact state of the 
laboratory model, validation data and testing data based on 
laboratory model.

(f)	 Designing a Deep Auto-Encoder (DAE) neural 
network in order to learn the damage-sensitive features from 

Fig. 2. The laboratory offshore jacket model in intact state.
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raw frequency data of the finite element model and the intact 
state of the laboratory model. 

(g)	 Investigating the performance of the proposed deep 
network for damage detection of the laboratory structure.

3- Results and Discussion
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element model and intact state of the laboratory model are 
used as the training data of the proposed deep network for 
extracting the damage-sensitive features. Then, the frequency 
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used for evaluating the proposed deep network. This study is 
based on 5 states in 3 scenarios for both finite element and 
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4. Conclusions 

 This paper presents a new damage detection method based on the 
finite element model and the intact state of the real model, in the 
presence of different uncertainties using deep network. The finite 
element model parameters are updated on the basis of real intact 
state. Some parts of the signals which are not related to the nature 
of the system are removed using the CEEMD method. To train the 
proposed deep network, only the frequency data of the finite 
element model and the real intact state are used. After that, the 
frequency data of the real model is used to evaluate the proposed 
network. Frequency data is extracted from vibration signals using 
FDD method. An offshore jacket structure in the laboratory 
environment is used to evaluate the proposed algorithm. The results 
show that, the proposed deep network is able to detect the damages 
of the real structure using the finite element model data and the real 
intact state. 
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4- Conclusions
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model, in the presence of different uncertainties using deep 
network. The finite element model parameters are updated on 
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the basis of real intact state. Some parts of the signals which 
are not related to the nature of the system are removed using 
the CEEMD method. To train the proposed deep network, only 
the frequency data of the finite element model and the real 
intact state are used. After that, the frequency data of the real 
model is used to evaluate the proposed network. Frequency 
data is extracted from vibration signals using FDD method. 
An offshore jacket structure in the laboratory environment 
is used to evaluate the proposed algorithm. The results show 
that, the proposed deep network is able to detect the damages 
of the real structure using the finite element model data and 
the real intact state.
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color are removed in each damage state. Also, the confusion matrix 
[8] of the proposed algorithm is shown in Fig. 6. 

 
Damaged (D1) Damaged (D2) Damaged (D3) Damaged (D4) 

    

Fig. 5. The FE models for different damage states. 
 (a) 

 
(b) 

 
(c) 

 

Fig. 6. Confusion matrices of the proposed algorithm (a) Scenario 
of 2-Class; (b) Scenario of 3-Class; (c) Scenario of 5-Class. 

4. Conclusions 

 This paper presents a new damage detection method based on the 
finite element model and the intact state of the real model, in the 
presence of different uncertainties using deep network. The finite 
element model parameters are updated on the basis of real intact 
state. Some parts of the signals which are not related to the nature 
of the system are removed using the CEEMD method. To train the 
proposed deep network, only the frequency data of the finite 
element model and the real intact state are used. After that, the 
frequency data of the real model is used to evaluate the proposed 
network. Frequency data is extracted from vibration signals using 
FDD method. An offshore jacket structure in the laboratory 
environment is used to evaluate the proposed algorithm. The results 
show that, the proposed deep network is able to detect the damages 
of the real structure using the finite element model data and the real 
intact state. 
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Table 1. Comparison of the mean values of the natural frequencies for the intact structure using different methods before and after updating. 

Mode 
No. 

 

 Natural Frequency (Hz)  Error (%) 

Laboratory Model  FE Model  FE Model compared with 
Laboratory Model 

Based on FDD   Based on FDD  FDD-FDD 
 Before updating After updating  Before updating After updating 

1  14.25  14.98 14.46  5.1% 1.5% 
2  -  - -  - - 
3  51.36  53.93 52.10  5.0% 1.4% 
4  80.13  80.84 80.36  0.88% 0.29% 
5  -  - -  - - 
6  104.33  103.56 104.15  0.73% 0.17% 

 

Table 1. Comparison of the mean values of the natural frequencies for the intact structure using different methods before and after 
updating.


