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ABSTRACT: Microtubules, polymer tubes stretched from the cell nucleus to the cell membrane, are 
the major parts of the cytoskeleton that provide the mechanical rigidity, organization, and shape retention 
for the cytoplasm of eukaryotic cells. These structures play a key role in some cellular processes such as 
cell division, intracellular transport, and the internal organization of cells. In all the above applications, 
the network structure of microtubules is the main reason for the importance of in-depth studies of their 
mechanical properties. In this paper, the propagation of elastic waves in periodic networks based on two-
dimensional fractal microtubules of fixed mass-center triangles is analyzed. This study begins with the 
selection of a suitable beam model for a microtubule and examines the dynamic behavior of microtubules 
by creating periodic structures. To obtain dispersion curves, finite element models of microtubules and 
their networks are developed, and the bandgap equations are calculated based on Bloch’s theory. The 
results show that depending on the topology of the selected unit cells as well as the considered periods, 
it is possible to design a frequency gap in specific ranges for the application of low and high-frequency 
bio-filters. This study helps researchers control or absorb some unwanted vibrations using periodic 
structures, and thanks to their better biocompatibility, these networks can be used in next-generation 
nanomechanical devices such as implantable biosensors.
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1- Introduction
Nature has a unique complex of active bio-molecules 

developed during the centuries. Nowadays, our knowledge 
about nano-bio-structures is flourishing and with the 
development of new micro/nanofabrication techniques, 
the artificial synthesis of such bio-structures is becoming 
possible [1].

Microtubules are one of the very fascinating nano-bio-
structures that are radially stretched from the cell nucleus 
to the cell membrane. They are the stiffest part of the cells 
tolerating the internal and external mechanical stresses. 
Hence, from the mechanical point of view, microtubules 
are the most important bio-polymer inside the cell. Koch 
et al. showed that it is possible to artificially synthesize 
microtubules and build small networks of them using optical 
tweezers [2]. The investigation of various mechanical 
behaviors of networked structures is an important research 
field these days [3, 4]. Hence, following the research by 
Koch et al. [2], in this work, we analyze wave propagation 
of architected uniform triangle mass center fractal nano-bio-
filters based on microtubules using finite element method 
and Bloch’s theorem [5]. The schematic representation of 
microtubules and their fractal structures studied in this work 
are shown in Fig. 1. 

2-  Methodology
As shown in Fig. 2, microtubule elements have three 

degrees of freedom on each node, i. e. longitudinal translation 
(u), transverse translation (v), and bending (φ) about the 
z-axis. 

According to Newton’s second law, the governing 
equation of the in-plane motion of a microtubule is written 
as Eq. (1).

 
Fig. 1. Schematic representation of microtubules and their uniform triangle mass center fractal structures 
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where fx, fy, and M denote the axial force, transverse force and bending moment applied on each node. Also, [M]6×6 
and [K]6×6 are the mass and stiffness matrices, respectively. The detailed formulations of these matrices [6] are presented 
in the full paper.  
Via assembling the above elements into the unit cell of the networked structures in Fig. 1 and using the proper 
transformation matrices to transform the parameters from the local coordinate system to the global coordinate system, we 
can write the governing equation of the motion of the whole unit cell as Eq. (2). 
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where fx, fy, and M denote the axial force, transverse force 
and bending moment applied on each node. Also, [M]6×6 and 
[K]6×6 are the mass and stiffness matrices, respectively. The 
detailed formulations of these matrices [6] are presented in 
the full paper. 
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Via assembling the above elements into the unit cell 
of the networked structures in Fig. 1 and using the proper 
transformation matrices to transform the parameters from the 
local coordinate system to the global coordinate system, we 
can write the governing equation of the motion of the whole 
unit cell as Eq. (2).

(2)    r r rr r r rM q K q f
 

+ =  

where r is the number of degrees of freedom of the unit cell and rq , rq , and rf  denote the acceleration, 
displacement, and force on each node, respectively. Eq. (2) is solved considering Bloch’s theorem [5] and the dispersion 
curves of the periodic structures are obtained in the irreducible Brillouin zone [3].   
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Fig. 3. Dispersion curves of a periodic structure with the unit cell of the simple triangle.

Fig. 4. Dispersion curves of a periodic structure with the unit cell of the first triangular fractal.
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Fig. 5. Collective bandgap areas of the periodic structures studied in this work. 

 
4- Conclusions 

   This paper presented wave-propagation characteristics of architected uniform triangle mass center fractal nano-bio-
filters based on microtubules. The zeroth, first, second, and third fractals were analyzed in the main manuscript and the 
results of the zeroth and first fractals were presented in this extended abstract. According to the results, the zeroth fractal 
has one bandgap but the first fractal has two. Also, the comparison of the collective bandgap areas revealed that the second 
fractal has the largest bandgap areas among all studied cases. 
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