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ABSTRACT:  In this paper, the nonlinear vibrations of a rectangular hyperelastic membrane resting on 
a nonlinear elastic Winkler-Pasternak foundation subjected to uniformly distributed hydrostatic pressure 
are investigated. The membrane is composed of an incompressible, homogeneous, and isotropic material. 
The elastic foundation includes two Winkler and Pasternak linear terms and a Winkler term with cubic 
nonlinearity. Using the theory of thin hyperelastic membrane, Hamilton’s principle, and assuming the 
finite deformations, the governing equations are obtained. Also, the kinetic energy, the work of uniform 
distributed force and pressure, and the effects of damping are determined, according to the strain energy 
function for neo-Hookean hyperelastic constitutive law. By applying Galerkin’s method, the nonlinear 
partial differential equation of motion in the transversal direction is transformed to the ordinary differential 
equations. Then, utilizing the method of multiple scales, the superharmonic and subharmonic resonances 
including the 1:3 superharmonic and 3:1 subharmonic, 1:5 superharmonic, and 5:1 subharmonic, 1:7 
superharmonic, and 7:1 subharmonic are analyzed. Also, the analytical results are compared with those 
presented by other researchers. Finally, the effect of the Winkler and Pasternak stiffness, the material 
properties, and various geometrical characteristics on the superharmonic and subharmonic resonances of 
the vibration behavior of a rectangular hyperelastic membrane is investigated.
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1. INTRODUCTION
The hyperelastic membranes find applications ranging 

from space structures, actuators, sensors, robotics, and large 
civil engineering structures to many biological problems and 
surgical procedures. 

Some researches have been focused on the vibration 
behavior of the hyperelastic structures. For example, the free 
and forced non-linear vibration of a thin plate with hyperelastic 
materials was studied by Breslavsky et al. [1]. The vibration 
behaviors of a radially stretched hyperelastic membrane under 
finite deformations were investigated by Goncalves et al. [2]. 
Soares and Goncalves [3] analyzed the nonlinear vibrations 
of a hyperelastic annular membrane under finite deformations 
that the material characteristic was similar to research in Ref. 
[2]. Also, Soares and Goncalves [4] investigated the nonlinear 
vibration of a rectangular hyperelastic membrane embedded 
within a nonlinear Winkler-type foundation.

In the most previous works as mentioned above, there 
has been less attention to the  secondary resonance analysis 
including the superharmonic and subharmonic resonances 
for the transverse nonlinear vibration of the hyperelastic 
membranes. Therefore, the main novelties of this study 
are as follows: (1) Superharmonic and subharmonic 
resonance analysis of a rectangular hyperelastic membrane 

is investigated using the method of multiple scales, (2) The 
rectangular hyperelastic membrane resting on the nonlinear 
elastic foundation includes two Winkler and Pasternak 
linear terms and a Winkler term with cubic nonlinearity. The 
principle of thin hyperelastic membranes is utilized to obtain 
the differential motion equations.

2. RECTANGULAR HYPERELASTIC MEMBRANE 
2.1. Model’s geometry

Considering Fig. 1, the schematic of a rectangular 
hyperelastic membrane is illustrated. The rectangular 
membrane with density Γ, thickness h, and lengths xoL  and 

yoL  is considered. Also, 
yo xoh L ,  h L 1 .

According to Fig. 1, a membrane particle is assumed as 
iP  in the Cartesian coordinate x, y, z, which is transformed 

to point iP ′  due to stretching and then to point iP ′′  due to 
deformation in a Cartesian coordinate X (x, y, t), Y (x, y, t) and 
Z (x, y, t). The strain energy density function for an isotropic, 
homogeneous, and rectangular hyperelastic membrane, 
considering the constitutive law of neo-Hookean is defined 
as:

( )1 1 3W C I= − � (1)
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where 1C  is the material parameter and 1I  is the first 
strain invariant that according to the deformation tensor of 
right Cauchy-Green can be obtained.

3. GOVERNING EQUATIONS
Regarding the undeformed membrane, the total 

displacements are as follows:

( ) ( )
( ) ( )
( )

0

0

, , ,
, , ,
, ,

X X x y u x y t
Y Y x y v x y t
Z w x y t

= +
= +
= �

(2)

where 0 xX xδ= , 0 yY yδ= , and xδ  yδ  are respectively 
the stretching ratios in x and y directions.

During the transverse vibration, similar to works presented 
by other researchers which are according to the finite element 
method, u and v components can be negligible in comparison 
with the transverse vibration displacement w [2, 3]. The 
nonlinear equation of motion in the transverse direction 
utilizing Hamilton’s principle is obtained as follows:

( )
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(3)

where  cC Cξ= , and ξ  cC  are respectively the damping 
factor and critical damping. ( ) ( )cosh oP t P t= Ω  is the distributed 
hydrostatic pressure.  oP  and Ω  are respectively the 
excitation amplitude and frequency.

3.1.	 The equation of motion discretization
In this section, to discretize the equation of motion, the 

transverse vibration displacement is considered as:

( ) ( ), , sin sin
xo yo

m x n yw x y t W t
L L
π π  

=         �
(4)

where ( )W t  is the time-dependent modal amplitudes. 
Substituting Eq. (4) in Eq. (3), and then utilizing Galerkin’s 
method, the discretized nonlinear motion equation in the 
transverse direction is obtained as:

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3
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ˆˆ

ˆ ˆ h

W t W t W t W t

W t W t P t
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+ + =



�
(5)

all coefficients are a function of π , h , 1C , Γ , xδ , yδ
, xoL , yoL , 1k , 2k , and 3k . Although they are too long to 
be explicitly written here, they can be easily computed with 
computer algebra.

4. PERTURBATION ANALYSIS
In this section, the secondary resonance cases for the 

rectangular hyperelastic membrane are analyzed by utilizing 
the method of multiple scales. In this regard, after finding 
the solvability equation, the polar form substitutes, then 
the imaginary and real parts of the resultant equations are 
obtained. Finally, by calculating the squares of these results 
and summing them for the steady-state motion, the frequency-
response equation can be obtained.

 
 

Fig. 1. Schematic of the hyperelastic membrane 
 

  

Fig. 1. Schematic of the hyperelastic membrane

xoL  3kg/m

yoL  1C MPa

Table 1. The geometrical characteristics and material parameters 
of the membrane.
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5. RESULTS AND DISCUSSION
Here, in order to analyze secondary resonances, the 

material parameters and geometrical characteristics for the 
neo-Hookean constitutive model are listed in Table 1.

The effect of the various initial stretching ratios in the 
x-direction ( xδ ) on the response of frequency amplitude 
for 1:3 superharmonic and 3:1 subharmonic resonances are 
demonstrated in Fig. 2. As can be seen, by increasing xδ
, the curves shift to the left and the hardening nonlinearity 
behavior is decreased. 

The influence of the nonlinear stiffness parameter for 
Winkler type foundation ( 3k ) on the frequency response 
for 1:3 superharmonic and 3:1 subharmonic resonances 
are demonstrated in Fig. 3. As expressed previously, the 
coefficient of the nonlinear deflection with cubic nonlinearity 
( 3w ) is considered as softening/hardening cubic nonlinearity 
parameter for the nonlinear elastic foundation. As shown in 
the figure, by increasing the value of 3 0k >  and 3 0k < , the 
hardening nonlinearity behavior is respectively increased and 
decreased.

6. CONCLUSIONS
In this paper, the secondary resonances for rectangular 

hyperelastic membrane resting on nonlinear Winkler-
Pasternak elastic foundation under harmonic excitation 
were presented. Considering the theory of thin hyperelastic 
membrane, Hamilton’s principle, and assuming the finite 

  
(a) 1:3 superharmonic 

resonance 
(b) 3:1 subharmonic 

resonance 
Fig. 3. Effect of the nonlinear stiffness parameter on the 

frequency-response curves 
 

Fig. 3. Effect of the nonlinear stiffness parameter on the frequency-response curves

deformations, the problem formulation was obtained. Then, 
the motion equation in the transverse direction was discretized 
by applying Galerkin’s method. To solve the secondary 
resonances for different cases, the multiple scales method 
was utilized. The key results can be summed up as follows:

Increasing stretching ratios in the x and y directions leads 
to decreasing the hardening nonlinearity behaviors.

By increasing the value of 3 0k > , the hardening 
nonlinearity behavior is increased, whereas, by increasing 
the value of 3 0k < , the hardening nonlinearity behavior is 
decreased.
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Fig. 2. Effect of the stretching ratio on the frequency-

response curves 
 

  

Fig. 2. Effect of the stretching ratio on the frequency-response curves

(b) 3:1 subharmonic resonancecurves(a) 1:3 superharmonic resonancecurves

(b) 3:1 subharmonic resonancea) 1:3 superharmonic resonance
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