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ABSTRACT: One of the essential issues in structural engineering is preparing resident comfort and a 
sense of security for the residents of high-rise structures against earthquakes and strong winds. Therefore, 
the use of control systems has been considered under dynamic loads. Tuned liquid damper is an 
affordable and helpful device for controlling the vibrations of the structure under dynamic lateral loads. 
In this study, a standard high-rise structure has been modeled in ANSYS software under earthquakes (far 
and near-field) and wind and the interaction between wind and structure has been investigated. Tuned 
Liquid Damper was used to reduce the responses of the structure under far-field records (El-Centro 1940 
and Hachinohe 1968), near-field records (Northridge 1994 and Kobe 1995), and wind. The responses of 
the structure such as displacement, velocity, acceleration, pressure, and streamline around the structure 
have been analyzed and also, the aerodynamic behavior of the high-rise structure against the wind has 
been investigated. Averagely, the results show that the Tuned Liquid Damper could reduce the maximum 
displacement of the structure to 16% under far-field records, 0.5% under near-field records, and 13% 
under the wind.
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1- Introduction
Different control techniques are developed to decrease 

structural responses and to improve the structural dynamic 
behavior under dynamic lateral loads. One of the best 
methods for protecting structures against external excitations 
is using control systems. Control systems are categorized 
into passive, active, semi-active, and hybrid control [1]. 
Performance evaluation of control systems under external 
excitations such as far and near-field earthquakes and wind 
are one of the most critical problems. In 2020, Farzam et al. 
[2] investigated the performance of a Magnetorheological 
(MR) damper installed on a 10-story shear building. In 
the wind tunnel practice on building aerodynamics, the 
Commonwealth Advisory Aeronautical Council (CAARC) 
tall building model is usually adopted to calibrate 
experimental techniques. In 2009, Brun and Awruch [3] 
investigated the effect of wind on the standard CAARC 
building. In 2019, Shirzadeh and Eimani simulated standard 
CAARC structure under four various wind velocities, and 
they examined mesh independence of the wind tunnel with 
four different types of meshing [4].

In this research, the CAARC standard high-rise structure 
with a height of 180 m under wind and earthquakes is 
investigated, and a Tuned Liquid Damper (TLD) is used 
to reduce the vibrations of the structure. Some particular 

items of this study are such as (1) evaluating various 
responses of CAARC standard structure under wind force, 
(2) performance assessment of TLD on a standard structure 
against the wind, (3) modeling of TLD fluid nonlinear 
motion and sloshing, including fluid-solid interaction.

2- The Numerical Model to Simulate
The CAARC standard tall building model is presented in 

Fig. 1. The full-scale dimensions of the building model are 
as follows: height (H) = 180 m; length (L) = 30 m; width 
(W) =45 m. According to the dimensions given in Fig. 1, the 
wind tunnel was simulated in ANSYS software.

The wind profile characteristic is shown in Fig. 1 and 
the earthquake records used are benchmark International 
Association of Structural Control (IASC) earthquakes. 
These earthquake records are two far-field (El Centro 1940 
and Hachinohe 1968) and two near-fields (Northridge 1994 
and Kobe 1995).

In this study, one TLD is simulated on the roof of the 
structure. The dimensions of TLD are as follows: length, 
width, and height are 15.5, 12.5, and 4 m, respectively. The 
two parameters of mass ratio and water ratio are assumed to 
be 1.5%, and 0.2, respectively, and the depth of water is 3 m.
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3- Results and Discussion
To investigate the standard CAARC tall building 

aerodynamic effect, obtained pressure contours and 
streamlines around the structure, and the building maximum 
responses have been studied under four earthquake records 
by ANSYS simulations. The distribution of pressure contours 
around the uncontrolled and controlled high-rise structure are 
described against wind load with a maximum velocity of 100 
m/s. In Fig. 2, the pressure contour can be well observed on 
a plane XY at Z = 422.5 m (center of the high-rise structure) 
and on a plane XZ at Y = 120 m (2/3 of the structure’s height).

Streamlines around the high-rise structure are shown 
in Fig. 3, where they are presented on horizontal (XY) and 

vertical (XZ) planes. The level of the XY plane is 422.5m, 
and the level of the XZ plane is 120m. In Fig. 3, horseshoe 
vortices, Vortex Bt, Vortex Nw, Saddle point, Downwash, and 
Upwash have been marked [5].

The displacement time history of the CAARC structure 
under the wind, far and near-field earthquake records are 
shown in Fig. 4.

4- Conclusions
Some important remarks can be pointed out from the 

results obtained, which may be summarized as follows: 
•The structural responses under wind far and near-field 

earthquakes have a sound reduction, respectively. The 

Fig. 1. Geometrical characteristics and boundary conditions used 
in the aeroelastic analysis of a high-rise building model

.Fig. 3. streamlines in plans of XY and XZ for controlled and 
uncontrolled modes

Fig. 2. Distribution of pressure in plans of XY and XZ for 
controlled and uncontrolled modes

Fig. 4. The top of structure Longitudinal displacement’s time 
history under wind and four near and far-field records for 

controlled and uncontrolled modes
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Streamlines around the high-rise structure are shown 
in Fig. 3, where they are presented on horizontal (XY) 
and vertical (XZ) planes. The level of the XY plane is 
422.5m, and the level of the XZ plane is 120m. In Fig. 
3, horseshoe vortices, Vortex Bt, Vortex Nw, Saddle 
point, Downwash, and Upwash have been marked [5]. 
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Fig. 3. streamlines in plans of XY and XZ for 
controlled and uncontrolled modes 
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Fig. 4. The top of structure Longitudinal displacement’s 
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4. Conclusions 

Some important remarks can be pointed out from the 
results obtained, which may be summarized as follows:  

•• The structural responses under wind far and near-
field earthquakes have a sound reduction, 
respectively.  The reduction percentages of 
structural responses for maximum displacement, 
velocity, and acceleration are 22%, 11%, and 3% 
under El-Centro, and 10%, 12%, and 0% under 
Hachinohe, respectively. Also, the reduction of 
maximum displacement, velocity, and acceleration 
for the Kobe earthquake was equal to 0%, 5%, and 
8%, and for the Northridge earthquake was 1%, 
1%, and 3%, respectively. Finally, the maximum 
displacement, velocity, and acceleration under wind 
vibration are 13%, 6%, and 2%, respectively. 

•• According to the studies, the average response 
reduction for maximum displacement, velocity, and 
acceleration at different heights of the structure is 
9%, 5%, and 3%, respectively. In other words, the 
TLD is better performing in reducing displacement 
than velocity and acceleration. 
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reduction percentages of structural responses for maximum 
displacement, velocity, and acceleration are 22%, 11%, and 
3% under El-Centro, and 10%, 12%, and 0% under Hachinohe, 
respectively. Also, the reduction of maximum displacement, 
velocity, and acceleration for the Kobe earthquake was 
equal to 0%, 5%, and 8%, and for the Northridge earthquake 
was 1%, 1%, and 3%, respectively. Finally, the maximum 
displacement, velocity, and acceleration under wind vibration 
are 13%, 6%, and 2%, respectively.

•According to the studies, the average response reduction 
for maximum displacement, velocity, and acceleration 
at different heights of the structure is 9%, 5%, and 3%, 
respectively. In other words, the TLD is better performing in 
reducing displacement than velocity and acceleration.
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