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ABSTRACT: In this study, the free vibrations of functionally graded graphene platelet-reinforced 
porous nanocomposite plates with various shapes such as rectangular, elliptical, and triangular ones 
embedded on an elastic foundation are analyzed. To mathematically model the considered plate and 
elastic foundation, the first-order shear deformation plate theory, and Pasternak model are used, 
respectively. Three types of graphene nanoplatelet distribution patterns and porous dispersion types 
through the thickness are considered for the nanocomposite plate. To obtain the effective material 
properties of the considered nanocomposite, a micromechanical model is employed. Then, the energy 
functional of considered functionally graded graphene platelet-reinforced porous nanocomposite plates 
are expressed, and the analytical P-Ritz method is used to solve the vibration problem corresponding to 
different shapes and boundary conditions, the influences of porosity coefficient, the weight fraction of 
graphene nanoplatelets, elastic foundation coefficients and also the lengths-to-width and -thickness ratios 
on the natural frequency are analyzed. It is illustrated that the plate with non-uniform and symmetric 
of first type porosity distribution pattern and the first type graphene nanoplatelets has a higher natural 
frequency. Also, by increasing the porosity coefficient, the natural frequency of the plate associated with 
all patterns of graphene nanoplatelets is reduced.
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1- Introduction
In recent years, many studies have been conducted on 

mechanical behaviors of Functionally Graded (FG) graphene 
platelets reinforced porous nanocomposite beams, plates, and 
shells. The effects of the geometry of nanoplatelets, weight 
fraction, porosity distribution, and geometric parameters 
on bending, buckling, and vibrational behaviors have been 
investigated [1].

Literature review shows that no study has been performed 
on free vibration of nanocomposite plate Reinforced 
Graphene Nanoplatelets (GPL) with arbitrary shapes 
including rectangular, elliptical, and isosceles triangular. In 
the present study, based on the first order shear deformation 
theory and using the p-Ritz method, the free vibration of 
arbitrary-shaped porous nanocomposite plates embedded on 
an elastic foundation is investigated. The elastic foundation 
is formulated using the Winkler-Pasternak model. Three 
types of distribution for pores and graphene nanoplatelets 
through the thickness are considered. The modified Halpin-
Tsai micromechanics model and extended rule of the mixture 
are used to determine the effective material properties of the 
porous nanocomposite. 

After convergence study and verifying the accuracy 
of the present results, a comprehensive parametric 
investigation is performed to study the influence of the 
weight fraction and geometric parameters of GPL nanofiller 
and porosity coefficient on the vibrational behavior of 
porous nanocomposite plates with various shapes.   

2- Problem Formulation 
In this paper, three types of FG porous plates along with 

the even porosity distribution case, denoted by ű, ,ű  are 
considered. To further strengthen the mechanical properties, 
the metal matrix of the composite plate is reinforced by 
GPLs. And the distribution of GPLs in the metal matrix may 
be uniform or non-uniform by adjusting the volume fraction 
along the plate thickness. Three different GPLs patterns are 
also considered for each porosity distribution which are [1].

Three distributions of internal pore inside of the proposed 
porous plates and three GPL dispersion patterns regarding 
the varying nanofillers volume contents űV  across the 
thickness are assumed.

The variation of Young’s module, shear module, and 
mass density through the thickness direction for different 
porosity distribution can be described by Eq. (1) and 0N  is 
the coefficients of porosity.
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The effective Young’s module and mass density are 
obtained based on the Halpin-Tsai micromechanics 
model. 

The adopted admissible P-Ritz functions which 
satisfy at least boundary condition for the deflection and 
rotation of plate are given by Eq. (4) [2]: 
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According to the P-Ritz method, the minimizing of 
total potential energy with respect to unknown 
displacement parameters yields: 
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3. Results and Discussion 

At the first step, the natural frequencies of the 
elliptical homogenous plate without pore and graphene 
platelet nanofillers are compared with those given in 
reference [3], as given in Table 1. An excellent 
agreement can be found between the provided results 
and those given in the literature. 
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Fig. 3. Comparison of the natural frequency of rectangular plate versus the length to thickness ratio of GPLs under 
CSCS boundary conditions for GPL pattern 

Fig. 2 depicts the variation of the dimensionless natural 
frequency of porous nanocomposite isosceles triangular 
plate versus the GPL weight fraction for various boundary 
conditions. Also, Fig. 3 illustrates the variations of the 
dimensionless natural frequency of porous nanocomposite 

rectangular plate versus the GPL shape ratio /GPL GPLl t  for 
various /GPL GPLl w  .  It can be seen that for higher values of 

/GPL GPLl t  , increasing /GPL GPLl w  , the differences between 
the natural frequencies are negligible.
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4- Conclusions
•The maximum frequencies can be achieved for the no-

uniformly symmetric porosity distribution 1 and GPL pattern 
A.

•An increase in the weight fraction leads to an increase in 
the natural frequencies of porous nanocomposite plates.

•Increasing the   and   ratios result in increasing and 
decreasing the natural frequencies of porous nanocomposite 
plates, respectively.
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