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ABSTRACT: In this paper, using the coupled Lord-Shulman generalized thermoelasticity theory 
and considering the nonlinear thermal effects, the thermoelastic behavior of annular disks made of 
functionally graded materials under internal thermal shock is investigated. To this end, the governing 
equations of the problem are first derived within the framework of the polar coordinates system. It 
should be noted that the energy equation is kept in its original nonlinear form in this derivation process. 
The solution procedure is then presented based on the generalized differential quadrature method. In the 
numerical results, the effects of important parameters such as functionally graded index and magnitude 
of applied thermal shock on the propagation of thermomechanical waves in the disks are studied. The 
results show that with increasing the functionally graded index, displacement and stress decrease as 
time evolves. Also, with presenting results for various magnitudes of thermal shock it is shown that 
conducting a nonlinear thermal analysis is necessary when the thermal shock magnitude is considerable. 
In addition, it is revealed that the fluctuations in the temperature are reduced as the relaxation time 
decreases. Moreover, increasing this parameter leads to temperature variations, whereas the frequency 
of the system decreases. 
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1- Introduction
Engineering structures are under thermal shock in various 

applications for which the analysis of thermomechanical 
phenomena is of great importance. Using the Fourier heat 
conduction law may lead to incorrect results when a solid 
is subjected to thermal shock. This is because temperature 
and temperature gradient are high, while the time period of 
operation is on the order of picosecond. Hence, the Fourier law 
fails to correctly capture heat wave propagation phenomena, 
and the speed of thermal wave propagation becomes 
infinite which is physically incorrect. Accordingly, some 
generalized thermoelasticity theories have been proposed. 
The thermoelasticity developed by Lord and Shulman [1] is 
the first and simplest theory in this area which is known as 
the L–S theory. According to this theory, the wavy motion 
of temperature is captured by inserting a simple relaxation 
time into the conventional Fourier law. A literature survey 
shows that there are numerous works on the thermoelastic 
analysis of various structures using the L-S theory (e.g. [2-
4]). In the present paper, an efficient numerical approach 
is proposed for the nonlinear generalized thermoelasticity 
problem of annular disks made of Functionally Graded 
Materials (FGMs) under thermal shock. The governing 
equations in polar coordinates are first derived based on 
the L-S theory considering nonlinear thermal effects. A 
numerical solution approach is then developed based on the 

GDQ technique. Effects of important parameters including 
Functionally Graded (FG) gradient index and thermal shock 
on the coupled thermomechanical response of disks are 
investigated.

2- Methodology
In the absence of body forces and considering 

axisymmetric displacements, the radial equation of motion 
is written as
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For the thermally nonlinear first law of thermodynamics 
in the disk according to the L–S theory, one can write 
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The dimensionless form of thermomechanical 
governing equations is then expressed as 
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Using the Generalized Differential Quadrature (GDQ) 
technique, the discretized equations can be represented 
in the following matrix form 
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Boundary conditions are also given by 

 (1)

The governing equations of motion are expressed as
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1. Introduction 
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For the thermally nonlinear first law of thermodynamics 
in the disk according to the L–S theory, one can write 
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The dimensionless form of thermomechanical 
governing equations is then expressed as 
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(6) 

The boundary conditions are directly imposed on Eq. 
(5), and then, equations of motion and energy are 
written as 
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The Newmark direct integration scheme and the Picard 
iterative technique are finally used to find the solution 
to the problem. 

3. Results and Discussion 

Fig. 1 indicates the temporal evolution of radial 
displacement, temperature, hoop, and radial stresses at 
the middle of a disk subjected to thermal shock. The 
dimensionless thermal shock, non-dimensional 
relaxation time, and the coupling parameter are taken as 
3, 0.64, and 0.0082594, respectively. Moreover, for the 
validation purpose with the results given in [4], the FG 
index is taken as zero. It is observed that the results are 
in good agreement with those reported in [4]. Also, this 
figure shows the wavy motion of temperature history 
which is owing to using the L-S theory. 

 

Fig. 1. Temporal evolution of radial displacement, 
temperature, hoop, and radial stresses at the middle of a 

homogenous disk 

The influence of the FG index on the displacement 

history, temperature and stresses waves of the disk are 

highlighted in Fig. 2. Three values are considered for 

the FG index including 0.0, 0.2, and 0.5. It is seen that 

the amplitude of displacement and stresses decreases by 

the evolution of time as the FG index gets larger.  

 

Fig. 2. Temporal evolution of radial displacement, 

temperature, hoop, and radial stresses at the middle of an 

FG disk for various FG indexes 

  

4. Conclusions 

The main conclusions of the paper can be summarized 
as: 

The amplitude of displacement and stresses decreases 
considerably and the frequency of oscillations increases 
when the FG index gets larger.   

With the decrease of relaxation time, the fluctuations of 
temperature decrease. 

An increase of thermal shock magnitude leads to an 
increase in displacement amplitude and stresses. 
However, it does not affect the frequency of 
oscillations.  
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Fig. 1 indicates the temporal evolution of radial 

displacement, temperature, hoop, and radial stresses at 
the middle of a disk subjected to thermal shock. The 
dimensionless thermal shock, non-dimensional relaxation 
time, and the coupling parameter are taken as 3, 0.64, and 
0.0082594, respectively. Moreover, for the validation purpose 
with the results given in [4], the FG index is taken as zero. It 
is observed that the results are in good agreement with those 
reported in [4]. Also, this figure shows the wavy motion of 
temperature history which is owing to using the L-S theory.

The influence of the FG index on the displacement history, 
temperature and stresses waves of the disk are highlighted in 
Fig. 2. Three values are considered for the FG index including 
0.0, 0.2, and 0.5. It is seen that the amplitude of displacement 
and stresses decreases by the evolution of time as the FG 
index gets larger

4- Conclusions
The main conclusions of the paper can be summarized as:
The amplitude of displacement and stresses decreases 

considerably and the frequency of oscillations increases 
when the FG index gets larger.  

With the decrease of relaxation time, the fluctuations of 
temperature decrease.

An increase of thermal shock magnitude leads to an 
increase in displacement amplitude and stresses. However, it 
does not affect the frequency of oscillations. 
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