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ABSTRACT: In this paper, graphene nanoplate was stabilized in a water-based fluid by sodium 
dodecyl sulfate as a surfactant. The prepared nanofluid in weight percentages of 0.01 -0.145 was placed 
in a gasket plate heat exchanger in the presence of cold fluid (deionized water). All experiments were 
performed for laminar flow in the range of Reynolds numbers of 500-1500. The effect of flow rate and 
concentration of nanofluid was investigated on the overall coefficient of heat transfer and pressure drop. 
The concentration increase causes both to increase at the same time. As a result, heat exchange efficiency 
and thermal effectiveness of the nanofluid were also analyzed. The highest thermal effectiveness 
(89%) and efficiency (1.244) occur at a minimum flow rate (2 liters per minute) and maximum weight 
percentage (0.145) Taguchi method was used to find the optimal conditions and confirm the validity of 
the experiments. It was also found that the decrease in the flow rate (98.56%) has a greater effect on the 
results of thermal effectiveness than the increase in concentration (0.404%). The error rate was 0.018%, 
which shows the accuracy of the results. 
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1- Introduction
Low thermal conductivity of fluids is a major problem 

in engineering industries and the subject of heat transfer. 
One way is to add solid particles, which due to their higher 
conductivity than the base fluid, improves the thermophysical 
property of the fluid, but adding solid particles to the base fluid 
sediments after a short time [1]. By stability methods such 
as covalent and non-covalent functionalization methods, this 
problem can also be solved [2]. The production of graphene 
and carbon nanotubes is rapidly developing. Thus, research 
has been done on stability methods and thermophysical 
properties. For example, Agromayor et al. [3] stabilized 
graphene nanoplates in the base fluid. Another way is to use a 
plate heat exchanger, which due to the shape of the plates and 
the chevrons on them, increases the heat transfer surfaces and 
makes the fluid flow turbulent. So, researchers have studied 
different fluids for further cooling or heating in order to find 
the optimal conditions [4]. Researchers have tried to achieve 
the appropriate heat transfer rate by new methods so that the 
ratio of heat transfer to pressure drop is optimal.

This paper aims to fabricate nanofluids containing 
graphene nanoplates in a water-based fluid by a non-covalent 
method and study it in a plate heat exchanger. So graphene 
nanoplates were stabilized in a water-based fluid at a ratio of 
1-1 by Sodium Dodecyl Sulfate (SDS) as a surfactant. Due 

to the importance of effectiveness and efficiency in optimal 
conditions, by the Taguchi method, the optimal conditions 
were analyzed.

2- Methodology
2- 1- Methods and materials

To prepare graphene nanofluids, graphene nanoplates 
(diameter 20-30 μm and thickness about 40 nm, 5 g,  VCN 
Company), deionized water (200 lit, Iran), and SDS as a 
surfactant (50 g, Azmiran Company) were prepared. First, 1 
g of surfactant was gently added to deionized water (neutral 
pH) placed on a sonicator, and stirred well for 25 minutes 
in the Erlenmeyer flask by a magnet. A gram of graphene 
nanoplates was added to them. Using an 800-Watt ultrasonic 
probe, the Erlenmeyer was stirred well for 40 minutes to 
finally produce a stable nanofluid at 0.1 wt.%. Other weight 
percentages of 0.01, 0.055, and 0.145 were obtained in the 
same way. The results of zeta potential analysis showed that 
the lower the weight percentage, the higher the fluid stability. 
For the mentioned concentrations, the zeta potentials were 
-32.61, -23.68, -19.27 and -16.85, respectively. It should 
be noted that the ratio of SDS to nanoparticles was 1-1. 
The ratios of 0.5-1 and 1-2 were also examined by zeta 
potential analysis (the zeta potential results were 27.43 - and 
-15.33). The highest stability was obtained for the ratio of 
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1-1). Shanbedi et al. [5] reached a similar result for carbon 
nanotubes and some surfactants such as Arabic gum and SDS, 
which showed the best stability ratio of 1-1.

  For the morphology of the obtained powder, X-ray 
energy diffraction spectrometer, Raman spectrometer, and 
transmission electron microscope were performed. The 
results of the X-ray diffraction spectrometer show that the 
graphene is purified and free of contamination. Also, the 
Raman results of three peaks for graphene nanoplate were 
found that the first peak was observed around 1500 cm-1 (D 
band), the second peak around 1580 cm-1 (G band), and the 
third peak around 2670 cm-1 (2D band). The transmission 
electron microscope indicated that the graphene nanoplate 
diameter was 20 nm.

2- 2- Laboratory setup
 Fig. 1 shows the prepared setup which consists of two hot 

and cold loops with a fluid storage tank, a pump, a section 
for measuring pressure and temperature (before and after the 
exchanger), and a section for measuring fluid flow rate. A 
U-shaped manometer is also installed in the setup to measure 
the pressure drop. Also in the hot section, there are two heating 
elements equipped with a thermostat, and a cooling system 
has been used in the path of the cold fluid and before the cold 
fluid storage source. The thermophysical properties can be 
calculated according to the bulk temperatures of the two fluids 
at the inlet and outlet of the heat exchanger. By recorded flow 
rates and thermophysical properties, the heat transfer rate and 
the total heat transfer coefficient are calculated. By obtaining 
the friction factors, the pressure drop for the path and inlets 
(ports) is achieved. The total pressure drop is two paths of 
inlet and outlet pressure [6]. Thermal effectiveness or the 
ratio of actual heat transfer to the maximum was calculated 
[7]. Efficiency was also calculated Eq. (1). In order for the 
use of nanofluids to be economically viable, the ratio of heat 
transfer coefficient to the pumping power in both nanofluids 
and water must be more than one [8].
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3. Results and Discussion 

To determine the effect of concentration on heat transfer 
coefficient and pressure drop, nanofluids of 0.01, 0.05, 0.1, 
and 0.145 wt.% were used. The results showed that increasing 
the concentration from 0.01 wt.% to 0.145 wt.% increases the 
overall heat transfer coefficient (At 2 lpm, increasing the 
weight percentage causes an overall heat transfer coefficient 
of 8.51% and at 6 lpm is 5.53%). The use of nanofluids in 
higher concentrations also increases the pressure drop. This 
increase in low flow rates is very close to the base fluid (at 
0.01 wt.% and 2 lpm, the pressure drop for nanofluid and base 
fluid is 0.1322 and 0.1312 kPa, respectively). In all the 
mentioned concentrations, the pressure drop is more than the 
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base fluid, however, in 0.01 wt.%, this difference is 
insignificant. For example, in the flow rate of 2 lpm, this 
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2 shows the effect of nanofluid flow rate on efficiency at 
different concentrations. Increasing the concentration leads to 
increasing efficiency (Increasing the flow rate from 2 to 6 lpm 
at of 0.01 wt% reduces the efficiency by 0.14%, but this rate is 
3.84% at 0.145 wt.%). The highest efficiency is when the 
nanofluid flow rate is the lowest and the concentration is 
maximum (2 lpm and 0.145 wt.%, maximum efficiency is 
1.244). It is also observed that in all concentrations this 
amount is more than one, which indicates that the use of 
nanofluids is appropriate and economically justifiable.  

 

Fig. 2. Effect of nanofluid flow rate on efficiency at different concentrations 

To evaluate the effectiveness in optimal conditions 
(increasing the thermal efficiency), the Qualitek-4 software 
that uses the Taguchi method was used [9]. In this study, the 
effect of weight percentage and the nanofluid flow rate was 
selected as two factors for statistical analysis of the Taguchi 
method. For each of the factors, 3 levels of change were 
selected (for example, for the concentration factor, levels of 
0.01, 0.1, and 0.145 were selected).To find the effect of each 
factor under optimal conditions, the analysis was performed. 
The results show that the effect of nanofluid flow rate 
(contribution=98.566%) is much greater than its weight 
percentage (0.404%) on the effectiveness. It means that it is 
easier to achieve optimal effectiveness by changing the 
nanofluid flow rate.  

4. Conclusions 
 The results showed that the use of nanofluids compared to 
water-based fluid (at 2 lpm) increases both the overall heat 

transfer coefficient (9.17%, favorable result) and pressure 
drop (13.1%, unfavorable result). As a result, the use of 
nanofluids, especially in high concentrations, increases both 
effectiveness factors (5.95% in volume flow rate of 2 lpm, and 
0.8% in 6 lpm) and the efficiency of the heat exchanger 
(3.84% at the least flow rate of 2 lpm). Also, it was found by 
the Taguchi method that the decrease in nanofluid flow rate is 
more effective than nanofluid concentration to reach the 
optimal conditions. Under optimal conditions (2 lpm and 
0.145 wt.%), the total heat transfer coefficient of 1262 
W/m2.K and pressure drop of 0.148 kPa, the effectiveness and 
efficiency were found to be  89% and 1.244, respectively. 
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