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ABSTRACT: In this study, the buckling of functionally graded graphene platelet-reinforced porous 
nanocomposite plates with various shapes such as rectangular, elliptical, and triangular ones embedded 
in an elastic medium is analyzed. To mathematically model the considered plate and elastic foundation, 
the first-order shear deformation plate theory, and the Winkler-Pasternak model are used, respectively. 
Three types of graphene nanoplatelet distribution and porous dispersion patterns through the thickness 
direction are considered for the nanocomposite plate. The effective material properties are obtained via a 
micromechanical model. By writing the energy functional of the system and using the analytical P-Ritz 
method, the influences of porosity coefficient, the weight fraction of graphene nanoplatelets, elastic 
foundation coefficients, and also the length-to-width and thickness ratios on the critical buckling loads 
are analyzed. It is illustrated that the plate with the non-uniform porosity distribution pattern of the first 
type and first type of graphene nanoplatelets due to the greater concentration of graphene nanoplatelets 
on the upper and lower surfaces of the plate and the increase in the stiffness of the plate, it has higher 
critical buckling load. Also, the maximum critical buckling load is related to shear loading and the 
minimum critical buckling load is related to biaxial buckling load. Also, by increasing the porosity 
coefficient, the critical buckling loads of the plate associated with all patterns of graphene nanoplatelets 
are reduced.
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1- Introduction
In recent years, graphene nanoplatelets are widely used 

as the reinforcing nanofillers to develop high-strength 
nanocomposites owing to their exceptional mechanical 
properties and chemical stability [1].

This paper is concerned with the buckling of functionally 
graded (FG) porous nanocomposite plates reinforced with 
graphene platelets. By using the First-Order Deformation 
Plate Theory (FSDT) to account for the transverse shear 
strain and P-Ritz method, the governing of equations is 
derived and then solved to calculate the critical uniaxial, 
biaxial, and shear buckling loads of the plate on elastic 
foundation with different porosity distribution and graphene 
nanoplatelets dispersion patterns also plate with arbitrary 
shapes such as rectangular, isosceles triangular and elliptical 
are considered. The elastic foundation is modeled with 
Winkler and Pasternak parameters. The influence of weight 
fraction, porosity distribution, and geometric parameters of 
the plate such as length to thickness ratio also parameters of 
the elastic foundation are investigated. 

2- Problem Formulation
In this paper, three types of FG porous plates along with 

the even porosity distribution case, denoted by 3 2 1, ,p p p are 
considered. To further strengthen the mechanical properties, 
the metal matrix of the composite plate is reinforced by 
Graphene Nanoplatelets (GPLs). And the distribution of 
GPLs in the metal matrix may be uniform or non-uniform by 
adjusting the volume fraction along the plate thickness. Three 
different GPLs patterns are also considered for each porosity 
distribution which are , ,A B C [2].

The variation of Young’s module, shear module, and 
mass density through the thickness direction for different 
porosity distributions can be described by Eq. (1) and 0N is 
the coefficients of porosity.
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The effective Young’s module and mass density are 
obtained based on the Halpin-Tsai micromechanics 
model. 

The adopted admissible P-Ritz functions which 
satisfy at least boundary condition for the deflection and 
rotation of the plate are given by Eq. (2): 
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According to the p-Ritz method, the minimizing of 
total potential energy with respect to unknown 
displacement parameters yields: 
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The critical buckling loads are obtained by setting 
the determinant of the stiffness matrix to be equal to 
zero. 

3. Results and Discussion 

At the first step to validation and accuracy, the obtained 
result is compared with the Ref. [3] for rectangular 
nanoplates for uniaxial and biaxial loading under the 
first type of porosity distribution. It can be seen, that the 
result obtained are highly accurate. 

Table 1. Comparting of critical buckling loads of 
nanocomposite plate reinforced with graphene 

nanoplatelets for  

 0/ 1, 0 / 5, 0 / 01GPLa b N     

  [2]  x yp p  [2]  xp  /a h  Pattern 

0.01550 0.01551 0.02899 0.02922 20 

GPL A 0.00712 0.00713 0.01343 0.01363 30 

0.00405 0.00406 0.00767 0.00784 40 

 

The variation of the dimensionless critical shear 
buckling load of a rectangular plate with respect to 
length to width ratio for different porosity distribution 
and graphene platelets pattern under clamped boundary 
condition is illustrated in Fig. 1. The reinforced effect of 
GPLs with symmetric pattern A is the most obvious, 
compared to those GPLs with patterns B and C. 

 (1)

The effective Young’s module and mass density are 
obtained based on the Halpin-Tsai micromechanics model.

The adopted admissible P-Ritz functions which satisfy at 
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least boundary condition for the deflection and rotation of the 
plate are given by Eq. (2):
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Fig. 1. The reinforced effect of GPLs with symmetric pattern 
A is the most obvious, compared to those GPLs with patterns 
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Fig. 2 depicts the variation of dimensionless buckling 
loads of porous nanocomposite elliptical plate with the 
changing weight fraction for porosity distribution and GPL 
patterns. It can be seen from this figure that the dimensionless 
critical buckling loads grow evidently with the addition of 
GPL weight fraction and the maximum dimensionless critical 
buckling loads that occurred in the first type GPL for shear 
buckling loads under clamped boundary condition.

The dimensionless shear critical buckling loads versus 
porosity distribution coefficients curves for isosceles 
triangular nanocomposite plate under various boundary 
conditions are plotted in Fig. 3. It can be seen that the 
influence of porosity distribution coefficients under the 
S1C2F3 boundary condition is negligible.
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boundary conditions are plotted in Fig. 3. It can be seen 
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Fig. 3. Comparting of critical buckling load in the shear 
loads mode in terms of the porosity distribution coefficient 
of the isosceles triangular plate under different boundary 
conditions. 

4. Conclusions 

 The best buckling can be achieved with the 
non-uniformly symmetric porosity distribution 
1 and GPL pattern A, indicating that 
centralizing internal pores on the mid-plane 
and dispersing nanofillers around the surface 
can obtain the highest flexural rigidity of 
porous nanocomposite plates the identical 
consumptions of the matrix materials and 
nanofillers. 

 The uniaxial, biaxial, and shear buckling loads 
decrease with the increase of porosity 
coefficient, while the critical buckling loads 
grow evidently with the addition of GPL 
weight fraction.  

 By increasing the length to width ratio of the 
rectangular nanocomposite plate, the critical 
buckling load values increase and the greatest 
increase is obtained in the porosity pattern of 
the first type and the distribution of GPL 
pattern A. 
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1. Introduction 

In recent years, graphene nanoplatelets are widely used 
as the reinforcing nanofillers to develop high-strength 
nanocomposites owing to their exceptional mechanical 
properties and chemical stability [1]. 

This paper is concerned with the buckling of 
functionally graded (FG) porous nanocomposite plates 
reinforced with graphene platelets. By using the First-
Order Deformation Plate Theory (FSDT) to account for 
the transverse shear strain and P-Ritz method, the 
governing of equations is derived and then solved to 
calculate the critical uniaxial, biaxial, and shear 
buckling loads of the plate on elastic foundation with 
different porosity distribution and graphene 
nanoplatelets dispersion patterns also plate with 
arbitrary shapes such as rectangular, isosceles triangular 
and elliptical are considered. The elastic foundation is 
modeled with Winkler and Pasternak parameters. The 
influence of weight fraction, porosity distribution, and 
geometric parameters of the plate such as length to 
thickness ratio also parameters of the elastic foundation 
are investigated.  

2. Problem Formulation 

In this paper, three types of FG porous plates along with 
the even porosity distribution case, denoted by 

3 2 1, ,p p p are considered. To further strengthen the 
mechanical properties, the metal matrix of the 
composite plate is reinforced by Graphene 
Nanoplatelets (GPLs). And the distribution of GPLs in 
the metal matrix may be uniform or non-uniform by 
adjusting the volume fraction along the plate thickness. 
Three different GPLs patterns are also considered for 
each porosity distribution which are , ,A B C [2]. 

The variation of Young’s module, shear module, and 
mass density through the thickness direction for 
different porosity distributions can be described by Eq. 
(1) and 0N is the coefficients of porosity. 
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The effective Young’s module and mass density are 
obtained based on the Halpin-Tsai micromechanics 
model. 

The adopted admissible P-Ritz functions which 
satisfy at least boundary condition for the deflection and 
rotation of the plate are given by Eq. (2): 
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(2) 

According to the p-Ritz method, the minimizing of 
total potential energy with respect to unknown 
displacement parameters yields: 
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(4) 

The critical buckling loads are obtained by setting 
the determinant of the stiffness matrix to be equal to 
zero. 

3. Results and Discussion 

At the first step to validation and accuracy, the obtained 
result is compared with the Ref. [3] for rectangular 
nanoplates for uniaxial and biaxial loading under the 
first type of porosity distribution. It can be seen, that the 
result obtained are highly accurate. 

Table 1. Comparting of critical buckling loads of 
nanocomposite plate reinforced with graphene 

nanoplatelets for  

 0/ 1, 0 / 5, 0 / 01GPLa b N     

  [2]  x yp p  [2]  xp  /a h  Pattern 

0.01550 0.01551 0.02899 0.02922 20 

GPL A 0.00712 0.00713 0.01343 0.01363 30 

0.00405 0.00406 0.00767 0.00784 40 

 

The variation of the dimensionless critical shear 
buckling load of a rectangular plate with respect to 
length to width ratio for different porosity distribution 
and graphene platelets pattern under clamped boundary 
condition is illustrated in Fig. 1. The reinforced effect of 
GPLs with symmetric pattern A is the most obvious, 
compared to those GPLs with patterns B and C. 
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Fig. 1. Comparting of critical buckling load in the shear 
loads mode in terms of length to width ratio of the 
rectangular plate under clamped boundary conditions 

Fig. 2 depicts the variation of dimensionless 
buckling loads of porous nanocomposite elliptical plate 
with the changing weight fraction for porosity 
distribution and GPL patterns. It can be seen from this 
figure that the dimensionless critical buckling loads 
grow evidently with the addition of GPL weight fraction 
and the maximum dimensionless critical buckling loads 
that occurred in the first type GPL for shear buckling 
loads under clamped boundary condition. 

 

Fig. 2. Comparting of critical buckling load in term of 
weight fraction of elliptical plate under clamped boundary 
conditions for porosity distribution of the first type 

The dimensionless shear critical buckling loads 
versus porosity distribution coefficients curves for 
isosceles triangular nanocomposite plate under various 
boundary conditions are plotted in Fig. 3. It can be seen 
that the influence of porosity distribution coefficients 
under the S1C2F3 boundary condition is negligible. 

 

Fig. 3. Comparting of critical buckling load in the shear 
loads mode in terms of the porosity distribution coefficient 
of the isosceles triangular plate under different boundary 
conditions. 

4. Conclusions 

 The best buckling can be achieved with the 
non-uniformly symmetric porosity distribution 
1 and GPL pattern A, indicating that 
centralizing internal pores on the mid-plane 
and dispersing nanofillers around the surface 
can obtain the highest flexural rigidity of 
porous nanocomposite plates the identical 
consumptions of the matrix materials and 
nanofillers. 

 The uniaxial, biaxial, and shear buckling loads 
decrease with the increase of porosity 
coefficient, while the critical buckling loads 
grow evidently with the addition of GPL 
weight fraction.  

 By increasing the length to width ratio of the 
rectangular nanocomposite plate, the critical 
buckling load values increase and the greatest 
increase is obtained in the porosity pattern of 
the first type and the distribution of GPL 
pattern A. 
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4- Conclusions
The best buckling can be achieved with the non-

uniformly symmetric porosity distribution 1 and GPL 
pattern A, indicating that centralizing internal pores on the 

mid-plane and dispersing nanofillers around the surface can 
obtain the highest flexural rigidity of porous nanocomposite 
plates the identical consumptions of the matrix materials and 
nanofillers.

The uniaxial, biaxial, and shear buckling loads decrease 
with the increase of porosity coefficient, while the critical 
buckling loads grow evidently with the addition of GPL 
weight fraction. 

By increasing the length to width ratio of the rectangular 
nanocomposite plate, the critical buckling load values 
increase and the greatest increase is obtained in the porosity 
pattern of the first type and the distribution of GPL pattern A.
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