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ABSTRACT: A Downburst can produce divergent outflow wind on the ground surface, which is different 
from the behavior of atmospheric boundary layer flows. In this research, the effects of downburst on a 
cube-shaped structure in two different directions of flow (α), four different ground surface angels relative 
to the downburst direction (θ), and different radial distances (X/D) relative to the downdraft center were 
investigated by a simulator that was made for this thunderstorm. Simulation of this flow is created by 
a blower whose task is to uniformize the flow created by the fan embedded behind it. The velocity and 
turbulence intensity of flow was measured at different X/Ds. also, the distribution of pressure coefficient 
on the sides of the model was measured at the X/D locations. In addition, a good agreement has been 
observed between the data comparison of this study and previous studies. It was observed that at the 
center of the downburst for all θs, the structure has a positive pressure coefficient along its sides. By 
moving away from the center of the storm, the flow behavior is similar to the boundary layer flows. By 
increasing θ, it was found that the difference of pressure coefficient between the windward side relative 
to the roof and the backward sides, increased, which in the worst case has changed by about 80%. By 
examining the direction of flow to the model, it was found that the force coefficients when the model 
is at α=45°, are about 35% less than when the model is at α=0°. Finally, it was found that at X/D=1, the 
maximum force coefficient is applied to the structure.
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1- Introduction
With their unique behavior, downdrafts can have 

unpredictable effects on various structures [1]. These flows 
make strong surface winds which have caused damage to 
short and lightweight structures. Investigation of downdrafts 
is essential because the basis for calculating wind loads 
on structures is boundary layer wind loads [2]. To date, 
several studies have been conducted to evaluate the effect of 
downburst and its effects on cube-shaped models as a general 
form of structures. They have been done experimentally 
and sometimes numerically [3-15]. These studies still have 
gaps in investigating the effects of storms on structures on 
sloping lands when the storm hits the structure. Therefore, the 
purpose of this study is to provide an efficient simulation of a 
microburst and its effects on the pressure distribution and the 
forces acting on a standard cubic structure. Also, changes in 
wind force due to changes in the impact angle of the surface 
flow concerning the structure and the ground slope will be 
another important goal of this research.

2- Methodology
In this research, a blower with a nozzle diameter (D) of 

0.2m has been used to simulate the flow of a downburst. The 

reference velocity of outflow from the blower is equal to 
12m/s. The velocity and the flow turbulence intensity were 
measured at the blower outlet and by a rake. A hotwire was 
used to measure the flow velocity. Also, a series of pressure 
sensors are used to measure pressure and forces acting on the 
model surfaces. To investigate the effects of the downburst, 
the cube-shaped model is placed on a test plate in front of 
the blower airflow. The test plate is located at four different 
angles with respect to the jet flow direction (θ). In addition, 
the model is placed in two directions of zero and 45 degrees 
relative to the surface flow (α). Also, in all cases, the model is 
placed in five different radial locations relative to the center 
of the nozzle (X/D) and examined. Fig. 1 shows a schematic 
view of this laboratory system.

3- Results and Discussion
To better understand the flow of the downburst, the 

blower is set at three different speeds (10, 12, and 14 meters 
per second), and the velocity profile is measured parallel to 
the nozzle and the ground. These data were measured in the 
range of 0.6±D and at three different intervals (0D, 0.5D, 1D). 
These results showed that the storm, with increasing distance 
from the nozzle, was slightly dispersed, and its core did not 
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weaken. Also, in a study of the characteristics of downburst 
flows near the surface and at three different speeds, it was 
found that the maximum value of flow velocity occurs in the 
height range of the model and at X/D=1. The least amount 
of flow turbulence occurs at X/D=1 and in the height range 
of the cube-shaped model. Also, the output flow velocity 
changes did not change the storm behavior, indicating this 
flow’s behavioral stability at these three different velocities. 
Fig. 2 shows a graph of the flow velocity near the surface at 
an output velocity of 12m/s.

In the study obtained from the pressure distribution on the 
sides of the model, it was found that all sides of the model 

are subjected to intense and uniform pressure at the central 
point of flow (X/D=0). However, at X/D>0.5, the pressure 
difference between the windward and the other sides of the 
cube becomes much more remarkable. In addition, it can be 
seen that the roof of the model has more negative pressure 
than the leeward.

Also, with increasing flow angle (θ), the pressure 
difference between the windward, with the roof pressure, 
and the leeward, increases even at the storm’s center. The 
maximum force in the X direction was applied to the model 
at X/D=1, and in the Z direction, it also occurred at the center 
of the downburst. In addition, it can be seen that placing the 
model at α=45˚ reduces the force on the model relative to the 
direction α=0˚. Fig. 3 shows the force coefficient in the X 
direction at α=0˚.

4- Conclusions
In this research, the effects of the angle of the cube-

shaped model on the downburst flow and the effect of the 
slope of the surface on the flow have been investigated in a 
laboratory. Also, to better understand this storm, the velocity 
profile of this flow has been measured at different speeds 
and places. By measuring the velocity profile of the outlet at 
different distances, it was found that this flow, apart from its 
fall velocity value, has a high uniformity. These results also 
show that the maximum amount of flow velocity occurs near 
the wall and in the height range of the model. It is positioning 
the model in the impact direction of α=45° causes the interval 
of pressure changes on the model to be less than the α=0° 
direction, which causes the pressure difference on different 
sides of the model to be less than each other. Increasing the 
angle θ has increased the pressure difference between the 
windward with the roof and the leeward. This can be seen 
even at the center of the downburst and can put the flowing 
sides of the structures in a more critical condition.
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