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ABSTRACT: The present study develops a numerical approach based on the mathematical models 
governing the behavior of fluid flow and drug transport in tumors to investigate the delivery of a 
macromolecule under the effect of the vascular normalization into a non-uniform tumor, including different 
parts of a real solid tumor. In this study, different tumor sizes in the range of 0.23 2.79cmeqR≤ ≤  are 
considered. The area under the curves of the drug average distribution and its deviation in the tumor site 
over time is studied as the amount of drug delivered and the uniformity of delivered drug to assess the 
quality of drug delivery. Results show that before and after normalization, the behaviors of interstitial 
fluid flow and the distribution of therapeutic agent concentration depend on tumor size. Normalization in 
all sizes reduces the interstitial fluid pressure, which this pressure drop increases as the tumor size reduces. 
Normalization improves antibody concentration distribution at different times depending on tumor 
size. However, from the point of view of the average spatiotemporal criterion, vascular normalization 
improves macromolecule delivery into the tumor site in 0.46 0.93cmeqR≤ ≤  by increasing the 
distribution uniformity. This research, by discussing the mechanisms affecting normalization efficiency, 
can provide insights for in vivo and in vitro studies that address the combination of anti-angiogenic 
therapy and chemotherapy. 
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1- Introduction
According to the importance of cancer understanding, 

many researchers from various disciplines study this issue 
from different points of view. In this way, mathematical 
modeling does have a great contribution to these studies.

The abnormal structure of the tumor microvascular 
network is one of the limits of efficient chemotherapy 
as a treatment method for cancer. Therefore, numerical 
investigation of the drug delivery into the solid tumor 
coincides with the anti-angiogenesis seems essential. Jain et 
al. [1] examined the Interstitial Fluid Pressure and Velocity 
(IFP and IFV) in the homogeneous tumor due to the vascular 
normalization induced by anti-angiogenic therapy in a basic 
mathematical study.

In the present numerical study, a more accurate survey 
is done about the drug delivery into the solid tumor by 
considering the vascular normalization function by applying 
both fluid flow and solute transport analyses to the model and 
exerting the non-uniform real image-based tumor. Moreover, 
drug delivery quality is marked not only by the quantity of 
carried drug into the tumor but also by the less variation in 
drug distribution.

2- Materials and Methods 
Governing equations, meshed view of the computational 

domain, and boundary conditions are discussed below to 
demonstrate the methodology of this study.

2- 1- Governing equations
The mathematical statements of interstitial fluid flow and 

drug transport describe the model of this problem. Interstitial 
fluid flow is defined by [2];
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(1) 
i iV k P    

(2) . i B LV      

In the above equations iV , k , iP , B , and L  show 
IFV, hydraulic conductivity of the interstitium, IFP, the 
fluid flow rate per unit volume from the blood vessels to 
the interstitium and vice versa, and the fluid flow rate 
per unit volume from the interstitium to lymphatic 
vessels, respectively.  

Eqs. (3) and (4) explain the drug transport behavior 
[2]. In which iC , J , B , L , and effD  illustrate the 

drug concentration, drug mass flux, rate of the drug 
transport per unit volume from blood vessels to the 
interstitium, rate of the drug transport per unit volume 

from the interstitium into the lymphatic system, and the 
effective diffusion coefficient, respectively. 
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2.2 Meshed geometry of the computational domain and 
boundary conditions 

Fig. 1 shows the cross-sectional view of the geometric 
model with the generated grid. Boundary Conditions 
(BCs) are shown in this figure.  

 

Fig. 1. Meshed view of the computational field and BCs. 

3. Numerical Results Validity 

The interstitial fluid flow analysis is validated by 
comparing the results of the model of this study and 
those of experimental data [3]. Baxter and Jain's [2] 
work is simulated to investigate the reliability of drug 
transport analysis. Fig. 2 demonstrates the comparison 
between the results of the current modeling and 
published ones [2, 3]. The good agreement shown in 
Fig. 2 verifies the accuracy of the numerical method of 
this research. 

4. Results and Discussion  

Fig. 3 shows the non-dimensional IFP distribution in 
different tumor sizes under the influence of vascular 
normalization. 

Normalization induced by anti-angiogenesis reduces 
the IFP, and this reduction enhances by decreasing the 
tumor size. In addition, normalization breaks the IFP 
behavior of uniform distribution throughout the tumor 
and makes the pressure gradient smoother in the tumor 
boundary by expanding it to the inner parts. 

Regarding the Area Under the Curves (AUC) of the 
Average Solute Concentration Distribution (ASCD) and 
Deviation from it (DASCD) in the tumor during the 
time (Fig. 4), it is found that the efficiency of 
normalization is in a certain range of tumor size. 

Inner boundary: 

t i n iR Rk P k P       

| |i iR RP P   

( ) |

( ) |

t
eff i i i R

n
eff i i i R

D C V C

D C V C





  

 
 

| |i iR RC C   

Outer boundary: 

i surP P  
. 0in C    

 

Tumor center: 

0iP   
0eff i i iD C V C  

 
 

 (1)

2 
 

 

1. Introduction 

According to the importance of cancer understanding, 
many researchers from various disciplines study this 
issue from different points of view. In this way, 
mathematical modeling does have a great contribution 
to these studies. 

The abnormal structure of the tumor microvascular 
network is one of the limits of efficient chemotherapy as 
a treatment method for cancer. Therefore, numerical 
investigation of the drug delivery into the solid tumor 
coincides with the anti-angiogenesis seems essential. 
Jain et al. [1] examined the Interstitial Fluid Pressure 
and Velocity (IFP and IFV) in the homogeneous tumor 
due to the vascular normalization induced by anti-
angiogenic therapy in a basic mathematical study. 

In the present numerical study, a more accurate 
survey is done about the drug delivery into the solid 
tumor by considering the vascular normalization 
function by applying both fluid flow and solute 
transport analyses to the model and exerting the non-
uniform real image-based tumor. Moreover, drug 
delivery quality is marked not only by the quantity of 
carried drug into the tumor but also by the less variation 
in drug distribution. 

2. Materials and Methods  
Governing equations, meshed view of the computational 
domain, and boundary conditions are discussed below 
to demonstrate the methodology of this study. 

2.1 Governing equations 

The mathematical statements of interstitial fluid flow 
and drug transport describe the model of this problem. 
Interstitial fluid flow is defined by [2]; 

(1) 
i iV k P    

(2) . i B LV      

In the above equations iV , k , iP , B , and L  show 
IFV, hydraulic conductivity of the interstitium, IFP, the 
fluid flow rate per unit volume from the blood vessels to 
the interstitium and vice versa, and the fluid flow rate 
per unit volume from the interstitium to lymphatic 
vessels, respectively.  

Eqs. (3) and (4) explain the drug transport behavior 
[2]. In which iC , J , B , L , and effD  illustrate the 

drug concentration, drug mass flux, rate of the drug 
transport per unit volume from blood vessels to the 
interstitium, rate of the drug transport per unit volume 

from the interstitium into the lymphatic system, and the 
effective diffusion coefficient, respectively. 

(3) 
.i

B L
C J
t

 


   


 

(4) 
eff i i iJ D C V C     

2.2 Meshed geometry of the computational domain and 
boundary conditions 

Fig. 1 shows the cross-sectional view of the geometric 
model with the generated grid. Boundary Conditions 
(BCs) are shown in this figure.  

 

Fig. 1. Meshed view of the computational field and BCs. 

3. Numerical Results Validity 

The interstitial fluid flow analysis is validated by 
comparing the results of the model of this study and 
those of experimental data [3]. Baxter and Jain's [2] 
work is simulated to investigate the reliability of drug 
transport analysis. Fig. 2 demonstrates the comparison 
between the results of the current modeling and 
published ones [2, 3]. The good agreement shown in 
Fig. 2 verifies the accuracy of the numerical method of 
this research. 

4. Results and Discussion  

Fig. 3 shows the non-dimensional IFP distribution in 
different tumor sizes under the influence of vascular 
normalization. 

Normalization induced by anti-angiogenesis reduces 
the IFP, and this reduction enhances by decreasing the 
tumor size. In addition, normalization breaks the IFP 
behavior of uniform distribution throughout the tumor 
and makes the pressure gradient smoother in the tumor 
boundary by expanding it to the inner parts. 

Regarding the Area Under the Curves (AUC) of the 
Average Solute Concentration Distribution (ASCD) and 
Deviation from it (DASCD) in the tumor during the 
time (Fig. 4), it is found that the efficiency of 
normalization is in a certain range of tumor size. 

Inner boundary: 

t i n iR Rk P k P       

| |i iR RP P   

( ) |

( ) |

t
eff i i i R

n
eff i i i R

D C V C

D C V C





  

 
 

| |i iR RC C   

Outer boundary: 

i surP P  
. 0in C    

 

Tumor center: 

0iP   
0eff i i iD C V C  

 
 

 (2)

In the above equations iV


, k , iP , Bφ , and Lφ  show IFV, 
hydraulic conductivity of the interstitium, IFP, the fluid flow 
rate per unit volume from the blood vessels to the interstitium 
and vice versa, and the fluid flow rate per unit volume from 
the interstitium to lymphatic vessels, respectively. 

Eqs. (3) and (4) explain the drug transport behavior 
[2]. In which iC , J



, Bϕ , Lϕ , and effD  illustrate the drug 
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concentration, drug mass flux, rate of the drug transport per 
unit volume from blood vessels to the interstitium, rate of 
the drug transport per unit volume from the interstitium into 
the lymphatic system, and the effective diffusion coefficient, 
respectively.
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(Fig. 4), it is found that the efficiency of normalization is in a 
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5- Conclusion
In the present study, interstitial fluid flow and drug 

transport mathematical statements were introduced to the 
numerical model to investigate the drug delivery into the non-
uniform solid tumor due to vascular normalization. According 
to the results, it is recognized that normalization improves the 
IFP and IFV specifications. Moreover, considering the drug 
transport model along with the fluid flow model show that to 
decide on whether normalization could be helpful or not, not 
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