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ABSTRACT: In gas furnaces based on oxyfuel combustion, radiative heat transfer is an important part 
of the heat flux and plays an important role in the flame temperature distribution. Different parameters 
affect the radiant heat transfer of furnaces. In this study, the effect of wall emissivity coefficient, oxidizer 
compound, and inlet flow swirl number in a Harwell gas furnace was investigated. k-ε standard, discrete 
ordinate, and eddy dissipation model were utilized to model turbulence, radiation, and combustion 
process, respectively. The radiative properties of the gaseous medium were determined using the 
weighted-sum-of-gray-gases model. The results showed that with increasing the swirl number, the 
maximum flame temperature moves upwards and approaches the inlet. This causes the heat flux of the 
walls to increase and the axial heat flux to decrease. By changing the oxidizer composition, the radiant 
activity of the gaseous medium changes. This causes a change in the temperature distribution in the 
whole field and axial and wall heat fluxes. The use of nitrogen in the oxidizer causes the maximum 
temperature to move towards the walls, while the use of carbon dioxide causes the flame to concentrate 
in the central axis, although the increase of the mass percentage of oxygen in the oxidizer improves 
flame diffusion. Increasing the wall emissivity coefficient causes the flame to become more concentrated 
and its maximum temperature to move upwards.
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1- Introduction
Carbon dioxide released from the combustion of 

fossil fuels is a major cause of global warming. Oxyfuel 
combustion can be considered a promising technology for 
carbon capture and storage. Radiation heat transfer is a 
major part of heat transfer in combustion systems, and also 
plays an important role in flame stability [1]. Computational 
fluid dynamics simulations have been widely used by many 
researchers for modeling swirl flames in the combustion 
chamber [2], estimating capsule heat transfer in return to 
the atmosphere [3], optimizing problem design parameters 
of blowing jets [4], suction [5] and examining the effect of 
the performance of variable parameters on the suction [6]. 
Swirl is an aerodynamic mechanism that increases flame 
stability and effectively enhances fuel-air mixing.  In their 
work, Yang et al. [7] investigated the effect of flow swirl 
number on turbulence interaction and heat transfer in oxygen 
furnaces. In our study, the impact of the swirl number, the 
type of oxidizer, and the radiation coefficient of the walls was 
pursued. The main innovation of this research is the study 
of the effect of the radiation coefficient of walls in swirl gas 
furnaces, which has received less attention from researchers.

2- Methodology
In this research, a gas furnace has been investigated, which 

is called a Harrow furnace. This furnace produces swirl and 
turbulent flames and its fuel is natural gas.  The dimensional 
details of which are shown in Fig. 1.

2- 1- Numerical method
In this research, simulation has been done in two 

dimensions and steady. The pressure-based algorithm was 
used to solve the equations and the simple algorithm was 
utilized to separate the pressure-velocity coupling. The 
standard k-ε model was employed to model the Reynolds 
stress. The species transfer model and eddy dissipation model 
were applied to transfer different species to each other and to 
simulate the combustion process in the furnace, respectively. 
The discrete orientation model was used to model the 
radiation heat transfer term. 

2- 2- Computational domain 
The generated grid is a structure type with rectangular 

elements. Due to the choice of the standard k-ε for modeling 
turbulence, the first layer of the grid is considered in such a 
way that y+ is approximately equal to 30. Fig. 2 shows the grid 
and the density of cells near the inlet and outlet boundaries.
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2- 3- Grid independence and validation
To investigate the independence of numerical solution 

from the grid size, three grids with 20,000, 40,000, and 80,000 
elements were constructed and the results of temperature 
distribution in the axial direction of r=0 were examined. 
The results showed that the mesh with 40,000 cells was 
sufficient. The results of this study are shown in Fig. 3. In 
order to validate, the simulation results were compared with 
the experimental and numerical results of other researchers. 
Fig. 4 shows that the present simulation is more consistent 
with the experimental results.

3- Results and Discussion
 To investigate the combined effect of the parameters, 

wall emissivity coefficients of 0.4 and 0.8 were considered 
and the impact of two different swirl numbers of 0.4 and 0.8 
on the composition of different gases was investigated. The 
results of this study have presented in Fig. 5. It can be seen 

that by placing a larger swirl number in the nitrogen oxidizer, 
the maximum axial temperature has increased, but in carbon 
oxidizers, it decreases. In each type of oxidizer, a similar 
trend is observed to change the radiation coefficient and the 
swirl number, which indicates that the general trend of the 
graph is determined by the type of oxidizer. With increasing 
emissivity coefficient, the axial temperature in all oxidizers 
reduced for all swirl numbers. As the swirl number increases, 
the maximum axial temperature occurs at closer distances 
from the inlet. Generally, with the simultaneous increase 
of the swirl number and the radiation coefficient, the high-
temperature zone of the flame is closer to the inlet and the 
temperature value of this zone has also decreased.

4- Conclusions
In this study, the effective parameters of the combustion and 

heat transfer process of swirl gas furnaces were investigated. 
The results showed that with increasing the wall emissivity 
coefficients, the wall heat flux increases. By changing the 
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oxidizing compound from carbon monoxide to nitrogen, the 
combustion gases resulting from the reaction of methane 
with nitrogen become more radiation active. As the mass 
percentage of oxygen relative to carbon dioxide in the oxygen 
oxidizer increases, the amount of water vapor leaving the 
combustion process increases, and the environment becomes 
more suitable for radiation heat transfer, consequently, the 
heat flux of the walls increases. As the swirl number increases, 
the fluid tends to move perpendicular to the axis. This causes 
the maximum flame temperature to occur near the walls and 
the inlet. So, it reduces the axial diffusion and enhances the 
diffusion perpendicular to the axis.
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