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ABSTRACT: When a shock wave propagates through a flow field that has nonlinear thermodynamic 
properties, different processes occur simultaneously. Wave compression, wave refraction, and vortex 
generation are examples of these processes that cause the waveform and thermodynamic properties 
of the fluid to change. The interaction of a shock wave with a cylindrical bubble is an example of 
a wave-bubble collision problem in which all of the above processes are observed. Due to the high 
computational cost of density-based algorithms in solving compressible interfacial flow problems such 
as shock wave interaction with the two-phase flow, using a fully coupled pressure-based algorithm is 
a good solution that will solve the problem with proper accuracy while reducing computation time. In 
this paper, using this algorithm, the interaction of the shock wave with the bubble is investigated; while 
validating the results, the effect of the computational grid size and the method of discretization of the 
governing equations are determined. It was observed that by increasing the number of computational 
grids according to the first-order upwind method, the simulation results become more accurate, and the 
numerical diffusion amount decreases. Also, by changing the discretization method to second-order 
upwind, the instabilities on the interface of the two phases increase due to spurious fluctuations, and the 
shape of the interface obtained from the numerical solution moves away from the experimental results.
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1- Introduction
When a shock wave impacts to inhomogeneity flow field, 

various phenomena such as wave refraction and reflection, 
vortex generation, and turbulence affect the physics of the 
problem. These interactions cause complex patterns of shock 
waves to emerge in the flow field [1]. Shock-accelerated 
inhomogeneous flows are used in many scientific, industrial, 
and medical applications. Supersonic combustion systems 
[2], Shredding kidney stones [3], and the use of high-energy 
systems such as inertial confinement fusion devices [4] are 
examples of the application of shock wave interaction with 
inhomogeneous compressible bubbles. Most simulations 
of shock wave interaction with Compressible Interfacial 
Flows have been done by density-based algorithms [5,6]. 
In density-based algorithms, the governing equations of the 
problem are solved for mass, momentum, and total energy, 
and for determining the flux, especially for Interfacial Flows, 
an exact or approximate Riemann Solver is usually used [7]. 
While density-based algorithms are naturally suitable for 
Compressible flows but in small Mach, the dependence of the 
density value on the pressure is low, and using this algorithm 
is not recommended.[8] Pressure-based algorithms are used 
less than other algorithms for simulating compressible 
flows because of the pressure correction obtained from the 

continuity equation [9]. But at the lower Mach number, the 
relationship between velocity and pressure is more vital than 
density and pressure, so the use of pressure-based algorithms 
has provided a suitable answer for a wide range of Mach 
numbers while maintaining the stability of the problem [10]. 
In this research, we tried to solve the classical problem by 
using the computational fluids dynamic software (FLUENT 
version 2021), as well as using the fully Coupled Pressure 
Based Algorithm, to determine the influence of sizing of the 
computational mesh and the discretization of advection term 
in the governing equations on the results.

2- Methodology
2- 1- Explaining the issue

In this paper, the interaction between the shockwave in 
the air with R22 and helium bubbles has been simulated as 
two-dimensional.

To simulate the problem, the computational field 
schematic is shown in Fig. 1. To be stable in the solution, the 
time step of the problem is determined by using the acoustic 
courant number. (Eq. (1))
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In this study, the volume of fluid method is used to 
capture the interface between two immiscible phases by 
using a color function ψ that is presented in Eq. (5). 
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3. Results and Discussion 

In this section, the results of the numerical simulation of 
the Shock Bubble Interaction (SBI) are investigated, and 
the accuracy of the results obtained from the present 
study has been confirmed by citing the results of 
numerical research by Denner et al [11]. 

 

 
Fig. 2. Density diagram resulting from the interaction 

of the shock wave (M=1.22) with the R22 bubble in 247μs, 
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Fig. 3. Numerical results of the density of shock wave 
interaction with the R22 bubble problem at 247μs in 

different computing mesh sizes. 

Also, a comparison of the results of solving the problem 
of shock interaction with the helium bubble for two 
methods of first-and second-order upwind discretization 
is shown in Fig. 4. 

 

 

Fig. 4. The effect of the discretization method of the 
governing equations on the results of solving the shock 
interaction with the helium bubble problem at 427μs. 

4. Conclusions 

Using the first-order upwind discretization method, the 
capture of reflective, transmitting, and collision waves 
in this study is similar to the results obtained from high-
precision discretization methods. Still, the waves are 
thicker due to numerical diffusion. The only advantage 
of using the second-order upwind discretization method 
is that in areas far from the interface, it captures the 
reflected and transmitted waves more accurately without 
numerical diffusion. So if the discretization method is 
used in such a way that it has first-order accuracy at the 
interface of two phases and its accuracy is two or higher 
in areas far from the interface, while maintaining 
stability in solving The results obtained from the 
simulation with such a discretization method will be 
very consistent with the experimental results. 
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1. Introduction 

When a shock wave impacts to inhomogeneity flow 
field, various phenomena such as wave refraction and 
reflection, vortex generation, and turbulence affect the 
physics of the problem. These interactions cause 
complex patterns of shock waves to emerge in the flow 
field [1]. Shock-accelerated inhomogeneous flows are 
used in many scientific, industrial, and medical 
applications. Supersonic combustion systems [2], 
Shredding kidney stones [3], and the use of high-energy 
systems such as inertial confinement fusion devices [4] 
are examples of the application of shock wave 
interaction with inhomogeneous compressible bubbles. 
Most simulations of shock wave interaction with 
Compressible Interfacial Flows have been done by 
density-based algorithms [5,6]. In density-based 
algorithms, the governing equations of the problem are 
solved for mass, momentum, and total energy, and for 
determining the flux, especially for Interfacial Flows, an 
exact or approximate Riemann Solver is usually used 
[7]. While density-based algorithms are naturally 
suitable for Compressible flows but in small Mach, the 
dependence of the density value on the pressure is low, 
and using this algorithm is not recommended.[8] 
Pressure-based algorithms are used less than other 
algorithms for simulating compressible flows because of 
the pressure correction obtained from the continuity 
equation [9]. But at the lower Mach number, the 
relationship between velocity and pressure is more vital 
than density and pressure, so the use of pressure-based 
algorithms has provided a suitable answer for a wide 
range of Mach numbers while maintaining the stability 
of the problem [10]. In this research, we tried to solve 
the classical problem by using the computational fluids 
dynamic software (FLUENT version 2021), as well as 
using the fully Coupled Pressure Based Algorithm, to 
determine the influence of sizing of the computational 
mesh and the discretization of advection term in the 
governing equations on the results. 

2. Methodology 

2.1. Explaining the issue 
In this paper, the interaction between the shockwave in 
the air with R22 and helium bubbles has been simulated 
as two-dimensional. 

 

Fig. 1. indicates the computational field of the problem of 
Shock Bubble Interaction. The shadowed area represents 

the bubble with a 50 mm diameter. 

To simulate the problem, the computational field 
schematic is shown in Fig. 1. To be stable in the 
solution, the time step of the problem is determined by 
using the acoustic courant number. (Eq. (1)) 
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In this study, the volume of fluid method is used to 
capture the interface between two immiscible phases by 
using a color function ψ that is presented in Eq. (5). 
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3. Results and Discussion 

In this section, the results of the numerical simulation of 
the Shock Bubble Interaction (SBI) are investigated, and 
the accuracy of the results obtained from the present 
study has been confirmed by citing the results of 
numerical research by Denner et al [11]. 
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of the shock wave (M=1.22) with the R22 bubble in 247μs, 
Fig. 2. Density diagram resulting from the interaction of 
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waves more accurately without numerical diffusion. So if 
the discretization method is used in such a way that it has 
first-order accuracy at the interface of two phases and its 
accuracy is two or higher in areas far from the interface, 
while maintaining stability in solving The results obtained 
from the simulation with such a discretization method will be 
very consistent with the experimental results.
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compared with obtained results from the numerical 
research of Denner et al [11].  

The first-order upwind discretization method is a TVD 
method; this paper uses this method to discretize the 
advection terms in the governing equations. Due to the 
low accuracy of this method, numerical diffusion is 
injected into the problem. So the results obtained are 
practically the same as those obtained by solving the 
Navier-Stokes equations. It's noticeable the amount of 
numerical diffusion can be significantly reduced by 
reducing the size of the computational grid. In this 
literature, the size of the computational grid is 
determined according to the number of cells located in 
the initial diameter of the bubble. (Eq. (6)) 
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According to Fig. 3. increasing the number of 
computational cells to 300 cells (in the initial diameter 
of the bubble) has a significant effect on the solution 
results, and by further reducing the size of the 
computational grid for the first-order upwind 
discretization method, there is virtually no change in the 
results. 
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Fig. 3. Numerical results of the density of shock wave 
interaction with the R22 bubble problem at 247μs in 

different computing mesh sizes. 

Also, a comparison of the results of solving the problem 
of shock interaction with the helium bubble for two 
methods of first-and second-order upwind discretization 
is shown in Fig. 4. 

 

 

Fig. 4. The effect of the discretization method of the 
governing equations on the results of solving the shock 
interaction with the helium bubble problem at 427μs. 
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in areas far from the interface, while maintaining 
stability in solving The results obtained from the 
simulation with such a discretization method will be 
very consistent with the experimental results. 
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