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ABSTRACT: Todays, various treatments such as surgery, chemotherapy, radiotherapy, and hyperthermia 
are used to treat cancer. The best treatment for cancer is to accurately control the distribution of 
temperature in the damaged tissue, which has been the subject of many studies in recent years. Due 
to the increased temperature in cancer treatment, and especially in hyperthermia, the healthy tissue 
adjacent to the damaged tissue also disappears and results in bad consequences. In this paper, the optimal 
laser control for cancer therapy has been done. According to the non-Fourier behavior of temperature 
transitions in laser treatments, the time-dependent transient temperature distribution in one-dimensional 
mode, along with the heat of metabolism and perfusion of blood, using the Pence heat transfer equation, 
is analyzed. In order to minimize the damage to the healthy tissues adjacent to the damaged tissue, 
the objective function includes the difference between the calculated thermal damage with the desired 
thermal damage is defined. Therefore, the thermal flux value is optimized as an optimal control problem, 
and the lowest and most useful value is obtained. Finally, the results of the numerical solution to this 
problem are extracted and shown for triangular thermal flux and square heat pulses.
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1- Introduction
In hyperthermia, the temperature of the cancer tissue is 

usually increased to a certain temperature for a specified 
period of time. The performance of thermal therapy 
depends on the temperature and damage in the target 
tissue without damaging the surrounding healthy tissue. 
Pennes bioheat equation is the most widely applied 
model for temperature distribution in living biological 
tissues [1]. A variety of analytical and numerical 
techniques have been developed for the solutions of 
thermal behavior in biological tissues [2-4]. The aim 
of the present study is to develop a conjugate gradient 
method to optimize a heat source history that results in 
a desired thermal dose in a one-dimensional bioheat 
transfer process.

2- Controller Design
A one-dimensional tissue subjected to laser pulses is 

considered as schematically shown in Fig. 1.
The heat transfer process can be expressed by the 

Pennes bioheat transfer model as follows.
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Fig. 1. Tissue subjected to laser pulses 
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Pennes bioheat transfer model as follows. 
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The control problem is reduced to how to choose the 
function Q(x,t) such that it minimizes the following 
objective function 
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D(x) and Dd(x) are, respectively, the computed and 
desired thermal dose over the thermal treatment period. 
For minimizing the function J under the constraints, the 
Lagrangian functional changed into an adjoint problem 
in the following form. 
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The variation ΔJ is derived after q(t) is perturbed by 
Δq(t) and T(x, t) is perturbed by ΔT(x, t). Subtracting from 
the resulting expression the original and neglecting the 
second-order terms, the sensitivity problem is derived as 
follows. 
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The following iteration process based on the 
conjugate gradient method is used for the estimation of 
q(t) by minimizing the above functional J [q(t)]. 
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Where parameters β, and M are calculated as follows. 
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The parameters A, B, C, J' and γ in Eqs. (7) are also 
derived as follows. 
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The variation ΔJ is derived after q(t) is perturbed by 
Δq(t) and T(x, t) is perturbed by ΔT(x, t). Subtracting from 
the resulting expression the original and neglecting the 
second-order terms, the sensitivity problem is derived as 
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The following iteration process based on the 
conjugate gradient method is used for the estimation of 
q(t) by minimizing the above functional J [q(t)]. 
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The parameters A, B, C, J' and γ in Eqs. (7) are also 
derived as follows. 
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4. Results and Discussion 

The known square-wave pulse heat source used in 
generating the desired thermal dose Dd(x) is plotted in 
Fig. 2. The variation of thermal dose in the iterative 
numerical process is shown in Fig. 3. The space and time 
temperature variation of the tissue was also depicted in 
Figs. 4 and 5, to show temperature field during the 
heating process. 
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5. Conclusions 

The conjugate gradient method was successfully 
applied for the solution of the hyperbolic heat conduction 
problem to determine the unknown time-dependent heat 
flux at the surface of living skin tissue while knowing the 
desired thermal dose in the tissue. Numerical results 
confirm that the proposed method can accurately 
estimate the optimal time-dependent surface heat flux for 
the problem to minimize the damage to the healthy 
tissues adjacent to the damaged tissue. 
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