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ABSTRACT: Soft robots made of hyperelastic materials are widely used in medicine. Designing 
and analyzing the behavior of soft actuators is challenging due to the nonlinear nature of hyperelastic 
materials. This study examines the effects of geometrical parameters including the wall thickness, the 
distance between the chambers, the layer’s thickness, the side walls thickness, the cross-section shape, 
the material of the actuator on the bending behavior, the created stresses in the inner walls and the 
resulting tip force to obtain the optimal geometry and material to create the maximum bending angle 
and tip force of the actuator. For modeling the common materials behavior of soft actuators such as 
Dragon Skin 30, TPU, Ecoflex30, and RTV2, five Hyperelastic model predictions are compared with 
the uniaxial stress-strain test on these materials, and the best model is selected to simulate each material. 
The results show that, by reducing the thickness of the walls, the distance between the chambers, and the 
lower layer’s thickness, and using the square cross-section with RTV2, the actuator’s maximum bending 
angle was achieved. However, by increasing the thickness of the walls, the number of chambers, and the 
thickness of the lower layers, and using DS30, the maximum tip force was achieved.
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1- Introduction
Soft robots are known for their features such as low cost 

of manufacturing materials, ease of construction, lightweight, 
and quick and easy control1[  [, and are widely used in 
industries and medicine[2[. These robots are used as surgeons 
and tools for rehabilitating human body organs. In this study, 
an effective method to investigate the effect of geometrical 
parameters such as the number of chambers, the thickness of 
the walls, the thickness of the first and second lower layers, 
the distance between the two chambers, the thickness of the 
upper wall of the chamber and the shape of the cross-section 
and the materials of the actuator are defined in its optimal 
performance. The materials used in modeling this actuator are 
Dragon Skin 30, TPU, Ecoflex30, and RTV2. Then, by using 
5 Neo-Hookean hyperelastic models, three-parameter Yeoh, 
Ogden1, Ogden2, and Moony-Rivlin, the accurate model 
for predicting the coefficients of these materials is selected. 
Initially, the results of the finite element model are compared 
with the results of the analytical method and the experimental 
results. Then the effects of geometrical parameters and 
different materials on the bending angle, the tip force of the 
actuator and the stresses on the inner surface of the chambers 
are investigated. In the end, the optimal geometric state and 
the best material are obtained to create the highest bending 
angle and the highest tip force of the actuator.

2- Hyperelastic Models
The parameters of the hyperelastic model are usually 

obtained by performing a uniaxial tensile test on standard 
samples and fitting the resulting stress-strain diagram.

Stress equations in terms of principal stresses for different 
hyperelastic models are as follows:

For Ogden’s hyperelastic model, the stress relation is 
in the form of relation (1)[3[:
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and tools for rehabilitating human body organs. 
In this study, an effective method to investigate 
the effect of geometrical parameters such as the 
number of chambers, the thickness of the walls, 
the thickness of the first and second lower layers, 
the distance between the two chambers, the 
thickness of the upper wall of the chamber and 
the shape of the cross-section and the materials of 
the actuator are defined in its optimal 
performance. The materials used in modeling this 
actuator are Dragon Skin 30, TPU, Ecoflex30, 
and RTV2. Then, by using 5 Neo-Hookean 
hyperelastic models, three-parameter Yeoh, 
Ogden1, Ogden2, and Moony-Rivlin, the 
accurate model for predicting the coefficients of 
these materials is selected. Initially, the results of 
the finite element model are compared with the 
results of the analytical method and the 
experimental results. Then the effects of 
geometrical parameters and different materials on 
the bending angle, the tip force of the actuator and 
the stresses on the inner surface of the chambers 
are investigated. In the end, the optimal 
geometric state and the best material are obtained 
to create the highest bending angle and the 
highest tip force of the actuator. 

2- Hyperelastic Models 
The parameters of the hyperelastic model are 

usually obtained by performing a uniaxial tensile 
test on standard samples and fitting the resulting 
stress-strain diagram. 

Stress equations in terms of principal stresses 
for different hyperelastic models are as follows: 

For Ogden's hyperelastic model, the stress 
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In the 2-parameter Moony-Rivlin model, the 
following relation is obtained [3[ :
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The relation between stress and strain for incompressible 
material is obtained with the Neo-Hookean model[3[ :

The relation between stress and strain for 
incompressible material is obtained with the Neo-
Hookean model[3[ : 
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3- FEM Modeling 
To parametrically check the performance of 

the actuator, a three-dimensional model of a 
network pneumatic actuator with a distance of lg 
equal to 2 mm, a square cross-section, and 
geometric dimensions shown in Table 1 have 
been created. 

Table. 1. Geometric dimensions (mm) of the actuator 
 

Parameter b  a  h  tb  l lg t s N 
Value 10 13 1 2 8 2 2 3 5 

Static air pressure in the form of pressure of 
0.05 MPa is entered into the walls of the internal 
chambers of the actuator and the end part of the 
actuator is completely bound by ENCASTER. 
Fig. 1). 

 
Fig. 1. Applying air pressure to the inner wall of 
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Also, to simulate the tip force of the actuator, 
a rigid object was used as a dynamometer. 

4-Results and Discussion 

In this section, to obtain the optimal geometric 
state, the effect of changes in important geometric 
parameters on the bending behavior of the 
actuator made with Dragon Skin 30 has been 
investigated, the results of which are as follows: 
by reducing the distance between the chambers, 
the collision of the outer walls of the chambers 
with each other is increased, so the maximum 
bending angle of the actuator also increases. At 
high pressures, changing the distance between the 
chambers does not have such an effect on the 
amount of bending of the actuator. The 
comparison of the results obtained from the 
examination of the changes in the thickness of the 
first and second layers and the number of 
chambers shows that by reducing the thickness of 
the first and second layers and increasing the 
number of chambers, the actuator is bent at a 
greater angle. It can be seen that the bending 
angle increases with the reduction of the 
thickness of the side walls of the chambers. 
According to the results obtained from the 
examination of two cross-sections of a square and 
a triangle, the greater area of the inner surface of 
the chambers results in a greater bending angle. 
To study the effect of the actuator material on 
bending behavior, four types of hyper-elastic 
materials: Dragon Skin 30, TPU(0,90), 
Ecoflex30, and RTV2 are considered as materials 
for the main body of the actuator and its first and 
second layers. RTV2 has less stiffness compared 
to the other three materials, as a result, by 
reducing the stiffness of the hyperelastic material, 
a greater bending angle is obtained (Fig.2). 
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5- Conclusions
In this study, the bending behavior of the network soft 

actuator with pneumatic excitation was investigated. The 
created finite element model was compared and validated 
with the help of previous experimental and analytical results. 
Then, with the help of this model, the effect of geometrical 
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