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Numerical analysis of moist-air flow in converging-diverging nozzle with equilibrium 
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ABSTRACT: In this paper, the numerical solution of compressible, transonic, unsteady, inviscid, and 
two-phase of moist-air flow in converging-diverging nozzles is studied. To do so, both equilibrium 
and non-equilibrium thermodynamic models with Roe’s scheme are considered and the results are 
compared. In the equilibrium thermodynamic model, the solver is spatially third-order and temporally 
second-order accurate, but in non-equilibrium thermodynamic model, the solver is spatially first-order 
and temporally second-order accurate. For the moist air in dry regions the pressure, temperature, and 
velocity are extrapolated while in wet regions the steam quality has been used instead of pressure. In 
this study, the influence of the geometry expansion rate and inlet total temperature and pressure on 
nucleation rate and the wetness fraction at the nozzle exit are investigated. The results show that by 
increasing the expansion rate of the nozzle the condensation onset occurs earlier; also, the nucleation 
rate and wetness fraction at the nozzle exit is increased. Comparing the results of equilibrium and non-
equilibrium thermodynamic models shows that the non-equilibrium thermodynamic model has better 
agreement with the experimental data.
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1- Introduction
Condensation phenomena in pure steam or moist-air 

flows is one of the most important factors that can produce 
excessive losses and cause mechanical erosions for example 
in turbines or aircraft. Therefore, the numerical scheme for 
the prediction of moisture in condensing flows is essential. 
Various numerical studies have been done on the modeling of 
condensable pure steam and moist-air flows [1-3]. 

In this study, the numerical solution of condensing 
transonic moist-air flow through converging-diverging nozzle 
using equilibrium and non-equilibrium thermodynamic 
models is investigated and the results are compared. In the 
non-equilibrium thermodynamic model which happens in 
reality (for transonic flow), when the supersaturation ratio 
or supercooling level reaches a critical value, condensation 
occurs by spontaneous nucleation of tiny liquid droplets. 

2- Governing equations
The governing equations in equilibrium thermodynamic 

model for quasi one-dimensional, unsteady, inviscid and 
compressible flows are composed of the conservation laws 
of continuity, momentum and energy, and are shown in full 
conservative form. In the absence of body forces one can 
write [4]:
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 Introduction 

Condensation phenomena in pure steam or moist-air 
flows is one of the most important factors that can 
produce excessive losses and cause mechanical erosions 
for example in turbines or aircraft. Therefore, the 
numerical scheme for the prediction of moisture in 
condensing flows is essential. Various numerical studies 
have been done on the modeling of condensable pure 
steam and moist-air flows [1-3].  

In this study, the numerical solution of condensing 
transonic moist-air flow through converging-diverging 
nozzle using equilibrium and non-equilibrium 
thermodynamic models is investigated and the results are 
compared. In the non-equilibrium thermodynamic model 
which happens in reality (for transonic flow), when the 
supersaturation ratio or supercooling level reaches a 
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critical value, condensation occurs by spontaneous 
nucleation of tiny liquid droplets.  

 Governing equations 

The governing equations in equilibrium 
thermodynamic model for quasi one-dimensional, 
unsteady, inviscid and compressible flows are composed 
of the conservation laws of continuity, momentum and 
energy, and are shown in full conservative form. In the 
absence of body forces one can write [4]: 
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Here Q, F, and H are respectively, the conservative 
vector, the flux vector, and the source term. A is the 
cross-sectional area of the nozzle, 𝜌𝜌 is the mixture 
density, u is the velocity, P is the mixture pressure, 𝑒𝑒𝑡𝑡 and 
ℎ𝑡𝑡 are respectively the total internal energy and total 
enthalpy of the mixture.  

The governing equations in the non-equilibrium 
thermodynamic model for quasi-one-dimensional flow in 
full conservative form consist of Euler equations for the 
mixture and four additional partial differential equations 
describing the condensate formation [5]: 
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Here 0Q , 1Q  and 2Q  are Hill’s moments, 𝐽𝐽 is the 
homogeneous nucleation rate, g is the liquid mass 
fraction and 𝑟̇𝑟 is radius growth rate. 

 Results and Discussion 

To validate the numerical study, the pressure 
distribution along the nozzle is compared with the 

experimental data of Delale et al [6]. These comparisons 
indicate relatively good agreements. The maximum error 
in equilibrium thermodynamic model is obtained as 10%, 
while in the case of non-equilibrium thermodynamic 
model the maximum error is about 7%. Therefore, the 
results show that the non-equilibrium thermodynamic 
model has better agreement with the experimental data. 

In this study, three nozzle geometries (A, B, and C) 
taken from the Moore et al. [7] is considered. Nozzle A 
of these series has the highest expansion rate while 
nozzle C has the lowest. Figure 2 shows the numerical 
results of wetness fraction along nozzles A, B, and C 
using the non-equilibrium thermodynamic model. The 
results show that the condensation onset in nozzle A 
starts sooner than other nozzles, also, the wetness content 
at the exit of nozzle A is higher than that of nozzles B and 
C. 

In Fig. 3 the profiles of droplet nucleation rate along 
the nozzles A, B, and C are shown. As shown in this 
figure, due to the high expansion rate of nozzle A, in 
addition to the wetness fraction (which is shown in Fig. 
2), the droplet nucleation rate in nozzle A is more than 
that of nozzle B, similarly, the nucleation rate in nozzle 
B is more than nozzle C. 

 

Fig. 1. Comparisons the numerical results of pressure 
distribution using equilibrium and 

 non-equilibrium thermodynamic models with the 
experimental data of Delale et al. [6] 
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cross-sectional area of the nozzle, 𝜌𝜌 is the mixture 
density, u is the velocity, P is the mixture pressure, 𝑒𝑒𝑡𝑡 and 
ℎ𝑡𝑡 are respectively the total internal energy and total 
enthalpy of the mixture.  

The governing equations in the non-equilibrium 
thermodynamic model for quasi-one-dimensional flow in 
full conservative form consist of Euler equations for the 
mixture and four additional partial differential equations 
describing the condensate formation [5]: 
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Here 0Q , 1Q  and 2Q  are Hill’s moments, 𝐽𝐽 is the 
homogeneous nucleation rate, g is the liquid mass 
fraction and 𝑟̇𝑟 is radius growth rate. 

 Results and Discussion 

To validate the numerical study, the pressure 
distribution along the nozzle is compared with the 
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while in the case of non-equilibrium thermodynamic 
model the maximum error is about 7%. Therefore, the 
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nozzle C has the lowest. Figure 2 shows the numerical 
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results show that the condensation onset in nozzle A 
starts sooner than other nozzles, also, the wetness content 
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In Fig. 3 the profiles of droplet nucleation rate along 
the nozzles A, B, and C are shown. As shown in this 
figure, due to the high expansion rate of nozzle A, in 
addition to the wetness fraction (which is shown in Fig. 
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Here Q, F, and H are respectively, the conservative vector, 
the flux vector, and the source term. A is the cross-sectional 
area of the nozzle, ρ  is the mixture density, u is the velocity, 
P is the mixture pressure, te  and th  are respectively the 
total internal energy and total enthalpy of the mixture. 
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The governing equations in the non-equilibrium 
thermodynamic model for quasi-one-dimensional flow in full 
conservative form consist of Euler equations for the mixture 
and four additional partial differential equations describing 
the condensate formation [5]:
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Here 0Q , 1Q  and 2Q  are Hill’s moments, 𝐽𝐽 is the 
homogeneous nucleation rate, g is the liquid mass 
fraction and 𝑟̇𝑟 is radius growth rate. 
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To validate the numerical study, the pressure 
distribution along the nozzle is compared with the 

experimental data of Delale et al [6]. These comparisons 
indicate relatively good agreements. The maximum error 
in equilibrium thermodynamic model is obtained as 10%, 
while in the case of non-equilibrium thermodynamic 
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results show that the non-equilibrium thermodynamic 
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B is more than nozzle C. 
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Here 0Q , 1Q  and 2Q  are Hill’s moments, 𝐽𝐽 is the 
homogeneous nucleation rate, g is the liquid mass 
fraction and 𝑟̇𝑟 is radius growth rate. 
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results show that the condensation onset in nozzle A 
starts sooner than other nozzles, also, the wetness content 
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the nozzles A, B, and C are shown. As shown in this 
figure, due to the high expansion rate of nozzle A, in 
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Here Q, F, and H are respectively, the conservative 
vector, the flux vector, and the source term. A is the 
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Here 0Q , 1Q  and 2Q  are Hill’s moments, 𝐽𝐽 is the 
homogeneous nucleation rate, g is the liquid mass 
fraction and 𝑟̇𝑟 is radius growth rate. 
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 Conclusions 

Condensation phenomena for transonic moist-air 
flow through converging-diverging nozzles using 
equilibrium and non-equilibrium thermodynamic models 
is studied numerically. The task is performed using a flux 
difference splitting scheme of Roe. In the equilibrium 
thermodynamic model, the solver is spatially third-order 
and temporally second-order accurate, but in the non-
equilibrium thermodynamic model, the solver is spatially 
first-order and temporally second-order accurate. The 
results of the non-equilibrium thermodynamic model 
show better agreement with experimental data. In this 
study, the influence of geometry expansion rate and 
stagnation conditions on the flow field and wetness 
fraction are investigated. The results show that by 
increasing the expansion rate of nozzles, the 
condensation occurs sooner and the content of liquid 
water at nozzle exit increases. 
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production from the moist air flow in highly humid regions.
4- Conclusions

Condensation phenomena for transonic moist-air flow 
through converging-diverging nozzles using equilibrium 
and non-equilibrium thermodynamic models is studied 
numerically. The task is performed using a flux difference 
splitting scheme of Roe. In the equilibrium thermodynamic 
model, the solver is spatially third-order and temporally 
second-order accurate, but in the non-equilibrium 
thermodynamic model, the solver is spatially first-order and 
temporally second-order accurate. The results of the non-
equilibrium thermodynamic model show better agreement 
with experimental data. In this study, the influence of 
geometry expansion rate and stagnation conditions on the 
flow field and wetness fraction are investigated. The results 
show that by increasing the expansion rate of nozzles, the 
condensation occurs sooner and the content of liquid water at 
nozzle exit increases.
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