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ABSTRACT  
Aeroelastic instability in blades is one of the most important sources of instability in helicopter rotors, and the 

most critical of these instabilities is flutter. In this paper, in order to investigate the blade flutter and its 

relationship with the rotor structural parameters, using the Hamilton's principle and considering the Euler-

Bernoulli beam theory, the coupled nonlinear partial differential equations governing the rotating elastic blade 

of a helicopter in the hover flight mode are extracted and converted into a set of ODEs by applying Galerkin 

method. Then the obtained equations for small perturbations are linearized around the steady state conditions. 

assuming the harmonic response, the natural frequencies of the blade in three motion axes are calculated and the 

relationship between the natural frequency and flutter frequency of the blade with structural and aerodynamic 

parameters are shown. Using numerical simulation, the results for two types of soft and stiff blades with given 

characteristics in terms of different parameters such as blade twist angle, pre-cone angle and rotation speed of 

rotor for the first mode shape are extracted. Finally, the effect of each of the mentioned parameters on the flutter 

frequency and also, the blade stability region is analyzed. It is shown that by increasing the blade stiffness, the 

flutter frequency will increase and the system will be stable. 
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1. Introduction 

The flutter phenomenon is the most dangerous type of 

instability in the helicopter rotor and occurs in various 

reasons. Hodges and Ormiston [1] investigated the 

stability of elastic flap bending, lead-lag bending, and 

torsion of uniform and untwisted cantilever rotor blades 

with variable structural coupling in hover flight mode. 

Pardo et al. [2] have presented the development 

mathematical modeling and analysis of the natural 

frequencies and mode shapes of coupled flap-lag-

torsion non-uniform rotor blades based on the Lagrange 

equations of motion. Kaya and Ozdemir [3] analyzed 

flutter stability of a uniform hingeless rotor blade in 

hover with structural coupling and demonstrated the 

effects of pitch angle and blade rotation speed. 

analyzing the aeroelastic stability of the curved 

composite hingeless rotor blade in the hover flight mode 

has been investigated by Amoozgar and Shahverdi [4]. 

Sarker and Chakravarty [5] have investigated of the 

coupled, steady-state dynamic response of the hingeless 

helicopter rotor blade at forward flight. 

In this paper, the coupled nonlinear partial differential 

equations of the rotating elastic blade of a helicopter in 

the hover flight mode are extracted using the Hamilton's 

principle and considering the blade as a Euler-Bernoulli 

beam and converted into a set of ODEs by applying 

Galerkin method. the obtained equations are linearized 

around the steady state conditions for small 

perturbations and the flutter frequencies of the blade are 

analyzed.  

2. Equations of motion 

The coordinate system of an untwisted blade before and 

after deflections is considered as follows: 

 

 

Figure 1. Coordinate system of rotating helicopter blade 

cross section before and after deformation [1, 6] 

by applying the Galerkin method to the nonlinear 

variable coefficient equations and linearizing them 

around small perturbations, the governing equations of 

the blade in the dimensionless form are as follows [1]: 
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In order to investigating of the flutter, the response is 

assumed to be harmonic and so from equations (1) to 

(3) it can be written as follows: 

     2 0M i D K                                     (4)     

M, D, K are mass, damping and stiffness matrices. 

 

3. Results and Discussion 

flutter determinant variations with frequency and 

dimensionless flutter frequency ( f ) for a blade with 

given parameters [1] are shown in “figure 2”.  
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Figure 2. flutter determinant Vs. frequency for 

100rad
s   and 8 , 5pc    

As shown in “Figure 2”, for a stiff blade, the flutter 

frequency (intersection of imaginary part with the zero 

axis) is about 1.57 and since the imaginary part 

intersects the zero axis in the negative region of the real 

part, the system will stable and the stability region is 

placed after the frequency point of 1.55 and also, for the 

flexible blade, the flutter frequency is about 0.82 and 

the stability region is placed after 0.826. it can be 

concluded that with increasing of the blade stiffness, the 

flutter occurred later and the system will be stable. 

 the flutter determinant variations with blade rotation 

speed, pitch angle  and precone angle pc are shown 

in “Figure 3” and “Figure 4”. 

 

Figure 3. flutter frequency variations with rotor speed for 

8 , 5pc    

 

 
and  angle Figure 4. flutter frequency variations for pitch

pcprecone angle 

As it can be seen from “Figure 3,4” with increasing of 

the rotation speed, the flutter frequency decreases. as 

well as with increasing of the pitch angle, the flutter 

frequency will increases and increasing the pre-cone 

angle decreses the flutter frequency slightly. 

 

4. Conclusions 

1- By increasing the stiffness of the blade, the flutter 

frequency increases and the flutter occurs later and 

since the flutter frequency is placed in the negative 

region of the real values, the system will be stable. 

2- By increasing the rotation speed of the rotor, while 

the flutter frequency decreases, the system is stable. 

3- As the pre-cone angle increases, the flutter frequency 

is slightly reduced and with increasing of pitch angle, 

the flutter frequency increases. 
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