
Amirkabir Journal of Mechanical Engineering

Amirkabir Journal of Mechanical Engineering, 49(2) (2017) 85-88
DOI: 10.22060/mej.2016.791

Analytical Solution for Temperature, Stress and Displacement Fields for a Hollow 
Cylinder Subjected to Asymmetric and Time Dependent Heat Flux
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ABSTRACT: In present paper, a two dimensional analytical solution for temperature, stress and 
displacement fields in a hollow cylinder is developed. An asymmetric and time dependent heat flux 
is exposed on outer surface of the hollow cylinder. Moreover, the cylinder carries a fluid that transfers 
heat through convection on its inner surface. The separation of variable method is implemented to 
obtain temperature field. Also, stress distribution is taken by means of thermal stress function method. 
Afterwards, displacement components are obtained by means of stress-strain and strain-displacement 
relations. The cylinder is regarded as a model for the absorber tube of parabolic trough collector. Using 
the analytical solution together with the actual properties of the model in solar power plant in Shiraz 
city, results are presented for a period of twelve hours from 06:00 a.m. till 06:00 p.m. The analytical 
solution is employed to extract numerical results using MATLAB software package. The results are also 
validated with those given by FEM, conducted via ANSYS computer code. Finally, it is concluded that 
differences between the results of analytical solution and outputs of ANSYS are result of of  infirmity of 
MATLAB software package in calculating the Kelvin functions with high accuracy.
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1- Introduction
Investigating temperature, stress and displacement fields, in 
wall of a hollow cylinder have always been of great interest, 
due to industrial applications. Ghosn and Sabbaghian [1] 
investigated quasi-static coupled problems of thermo-
elasticity for cylindrical regions. They used Laplace 
transform in conjunction with calculus of residues and 
convolution theorem to present their solution. Goshima 
and Miyao [2] considered a long hollow circular cylinder 
exposed to transient internal heat generation and loss through 
convection. They used Laplace transform and Green function 
to study the problem. 
In the present paper, initially, a two dimensional analytical 
solution for temperature distribution in a hollow cylinder by 
means of the separation of variable method is presented. As 
for the boundary condition, asymmetric and time dependent 
heat flux is exerted on the outer surface. Moreover, the 
cylinder carries a fluid that transfers heat through convection 
on its inner surface. Afterwards, thermal stress is taken by 
means of thermal stress function. Finally, displacement 
components are obtained by means of stress-strain and strain-
displacement relations.

2- Mathematical Modelling
We can consider an infinite hollow cylinder of the inner 
and outer radius of ri=a and ro=b, respectively. The two-
dimensional heat diffusion equation in cylindrical coordinates 
is
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where, r is the radial distance, and k is the thermal diffusivity 
which is defined as
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where λ is thermal conductivity, ρ is the density, c is the 
specific heat and T0 is initial temperature . The solution 
T(r,θ,t) must satisfy the boundary conditions given in Eqs. 
4 and 5.
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3- Temperature Distribution
We can construct a solution for Eq. 1 by the separation of 
variable method  as

(6)( , , ) ( ) ( ) ( )r t R r M tτ θ φ θ=

Substituting Eq. 6 into Eq. 1 and applying the boundary 
conditions. Following solution is derived.
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4- Stress Distribution
Temperature distribution is given in following format
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For the plane strain problem, the compatibility equation can 
be written in terms of stress function
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Where χ is thermal stress function notation. The stresses can 
now be determined in terms of stress function given by 

(13)

2

2 2

2

2

1 1

1

r

r

r r r

r

r r

θ

θ

χ χσ
θ

χσ

χσ
θ

 ∂ ∂
= + ∂ ∂ 
∂ 

= ∂ 
 ∂ ∂ = −   ∂ ∂  

If we suppose

(14)
0 1

( , , t) ( ) cos( ) ( )sin( ) iwt
n n

n n
r f r n g r n eχ θ θ θ

∞ ∞

= =

 = + 
 
∑ ∑

Finally, we have for n=1
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where α is the coefficient of thermal expansion, v is Poisson’s 
ratio, and E is the Young’s modulus of elasticity.

5- Displacement Distribution
In linear thermo-elasticity we have
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Substituting for σr and σθ from Eq. 15 and τ from Eqs. 8 into 
Eq. (16) and subsequent integrating yields

(17)
( )

( )

2 2
2 3 4

2 2
1 1

2 2
2 3 4

2 2
1 1

1cos (1 4 ) (1 2 ) ln

(1 ) (s)s (s)
2 1

1sin (1 4 ) (1 2 ) ln

(1 ) (s)s (s) ( )
2 1

r

r r

a a

r r

a a

u C r C r C r
E

r F ds F ds

D r D r D r
E

r G ds G ds U

νθ ν ν

ν α
ν

νθ ν ν

ν α θ
ν

−

−

−

−

+  = + − + −  
 + + +  −  

+  + + − + −  
 + + + + −  

∫ ∫

∫ ∫

(18)

2 2
2 3 4

2 2
1 1

2 2
2 3 4

2 2
1 1

1sin (5 4 ) (1 2 ) (1 ln )

(1 ) (s)s (s)ds
2(1 )

1cos (5 4 ) (1 2 ) (1 ln )

(1 ) (s)s (s)ds
2(1 )

r r

a a

r r

a a

u C r C r C r
E

r F ds F

D r D r D r
E

r G ds G U

θ
νθ ν ν

ν α
ν

νθ ν ν

ν α
ν

−

−

−

−

+  = + − + − −  
 + + −  −  

+  − + − + − −  
 + + − − −  

∫ ∫

∫ ∫ ( )d (r)vθ θ +∫

ur and uθ are radial and circumferential displacements and   
V(r) and U(θ)  represent rigid displacement and rigid rotation.

6- Results and Discussion
Comparison of temperature change in analytical solution and 
FEM for actual model of absorber tube in solar power plant in 
Shiraz city are shown in Figure. 1. The reason of differences 
is in infirmity of MATLAB software package in calculation 
of the Kelvin functions with high accuracy.
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7- Conclusions
The separation of variable method is used to obtain 
temperature field. Also, stress distribution is taken by means 
of thermal stress function method. Afterwards, displacement 
components are obtained by means of stress-strain and strain-
displacement relations. We conclude that differences between 
the results of analytical solution and output of ANSYS 
computer code are result of of  infirmity of MATLAB software 
package in calculating the Kelvin functions precisely.
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Figure 1. Comparison of temprature change distribution, 
analytical versus FEM




