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Two Dimensional Simulation of Film Boiling Heat Transfer in Complex Geometries 
Using Front Tracking Method
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ABSTRACT: Film boiling has various industrial applications, especially in heat exchangers. Studying 
this phenomenon on complex geometries and investigating heat transfer coefficient is desired by many 
industries. The numerical method used here is a finite difference/ front tracking method which is 
developed independently for film boiling in complex geometries. The film boiling over two or more 
cylinders is simulated using this method. The effects of spacing, angle, and diameter are investigated 
for two cylinders. For the case with many cylinders, the effects of different geometrical configurations 
(regular and staggered) and the number of rows are investigated by calculating the average Nusselt 
number on each cylinder. It is observed that the cylinder spacing does not have any significant effect on 
the Nusselt number for the upper cylinder. However, the angle and cylinder diameter significantly affect 
the Nusselt number for the upper cylinder. In the regular configuration, the Nusselt numbers for the 
upper cylinders are relatively uniform and higher than lower cylinders. In the staggered configuration, 
however, the Nusselt numbers of the upper cylinders are different, non-uniform, and higher than those 
of the simple geometry.

Review History:

Received: 1 August 2017
Revised: 16 October 2017
Accepted: 30 October 2017
Available Online: 3 November 2017

Keywords:

Film boiling
Front tracking method
Complex geometries
Heat transfer

423

1- Introduction
So far, many developments have been performed to improve 
heat transfer in chemical and oil industries as well as power 
plants. Researchers are still trying to maximize the heat 
transfer coefficient, which results in enhanced efficiency, 
reduced energy consumption, lower demand for construction 
materials, lower cost of fuel and optimization of the space 
required for constructing heat exchangers. In natural 
convection, single phase fluid flow occurs at a heat transfer 
coefficient in the range 5-10 W/m2K and 100-200 W/m2K 
for gases and liquids, respectively. In forced convection, the 
coefficient reaches 30-150 W/m2K and 100-1000 W/m2K for 
gases and liquids, respectively. For multiphase flows (e.g. 
boiling and condensation), however, heat transfer coefficient 
may reach as high as 4000-5000 W/m2K. Such a high heat 
transfer coefficient during the boiling process may resolve 
difficulties with respect to the heat transfer coefficient for 
designers of heat exchangers [1]. One of the most recent 
works performed in this respect is that by Kang [2]. In his 
experiments, he investigated the effect of two pipes and heat 
flux of every pipe on heat transfer coefficient. The evident 
effect of the two pipes in heat transfer coefficient is visible 
when heat flux of the lower pipe exceeds that of the upper 
one, and heat flux of the upper pipe being below 60 kW/m2. 
The bubbles, rising from the surface of the pipes, were imaged 
at different flow conditions. When heat fluxes are low, larger 
bubbles are observed on the upper pipe. They found that the 
higher the heat fluxes, the larger will be the size of bubbles. 
The numerical method used here is a finite difference/ front 
tracking method which is developed independently for film 
boiling in complex geometries. Obtaining Nusselt number 
for different cylinders in staggered and simple arrangement 

and predicting the shape of vapor layers rising from cylinders 
surface and how they interact with each other, are the most 
purposes of this research.

2- Methodology
All the governing equations for film boiling phenomenon 
are considered in this section. These include conservation of 
mass, momentum, and energy, and the source terms that enter 
the formulation. Furthermore, the boundary condition for a 
solid body such as a circular cylinder is explored in detail. In 
general, conservation equations (including mass, momentum, 
and energy) are written as follows (for details, please refer to 
Esmaeeli and Tryggvason [3]).
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Here, viscous dissipation term in the energy equation is 
neglected since the velocity gradient is small in the present 
problem. The above equations are valid in different phases, 
but the conditions for the jump at the interface for the mass 
and momentum and energy equations are defined as follows:Corresponding author, E-mail: saeedm@cc.iut.ac.ir
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In these equations, ul and uv are fluid velocities in liquid and 
vapor phases, respectively; uf is the velocity of the interface, 
and m is the vaporization rate at the interface. It is assumed 
that the temperature at the interface, Tf , is equal to saturation 
temperature at the corresponding pressure, i.e.: Tf=Tsat(Psys) . 
In general, Eqs. (1), (2), (4) and (5) should be solved for each 
phase and at the interface. Considering the jump condition 
at the interface, momentum and energy equations take the 
following forms:
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Here, δ is a two- or three-dimensional delta function which 
is obtained by successive multiplication of single delta 
function. x is an arbitrary point within the solution domain, 
and xf is an arbitrary point on the interface (all variables with 
the subscript f are related to the interface). In the past, these 
equations were solved using second-order projection without 
taking into account any phase change. If there is no phase 
change, then Eq. (1) reduces to ∇.u=0 which characterizes 
incompressible flows. Here, incompressibility is applied to 
each phase. At the interface, however, compressibility exists 
due to the change in phase. Even though it is still possible 
to write Eq. (1) in such a way that it is compatible with the 
projection method, but the velocity field can be considered 
as follows:
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In general, it can be declared that the Eqs. (7), (8) and (10) 
should be solved. These equations are solved using a second-
order temporal-spatial method on a staggered grid. I is the 
indicator function.

3- Results and Discussion
Fig. 1 shows the growth of the bubble at two different times. 
Buoyancy causes the bubble to move vertically. The upper 
part of the vapor bubble starts to widen while its lower 
part becomes thinner. However, after a certain time, due to 
vaporization and buoyancy force, the thickness of the vapor 
layer on the lower part of the cylinder becomes constant. The 
temperature of the cylinder wall prevents further thinning of 
the lower part of the bubble due to the vaporization of the liquid. 
The upper part of the bubble, however, continues to grow and 
develops a mushroom-shape. The bubble tends to be released 
from the vapor film, provided that the upper part continues 
to grow. As a result, the lower part of the bubble becomes 
thinner. Several factors control the release of the bubble from 
the vapor film. These include the cylinder temperature which 
rises the temperature and thereby vaporizes the liquid in the 
lower part of the bubbles; the growth rate of the upper part 
of the bubbles; also the interfacial tension which contributes 
to thinning of the vapor layer. Fig. 1 shows contours of the 
indicator function too. This function is one in liquid and zero 
in vapor and varies between zero and one as one moves across 
the interface. The higher the grid resolution, the lower is the 
thickness of this zone (the zone where the indicator function 
changes.) However, considering the fact that the solid body is 
introduced into the flow using its specific indicator function, 
the cylinder boundary is not evident in this figure.

Fig. 2 demonstrates the growth and rise of bubbles at 
different times for 4 rows of cylinders. As can be seen, the 
vapor bubbles grow from the lower cylinders and once passed 
through the upper cylinders, surround them. Furthermore, the 
grown bubbles further rise towards the vapor layer on top of 
the computational domain.

Fig. 2. Contours of the indicator function at 5s (left) and 15s 
(right)
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4- Conclusions
Film boiling was studied on the two-cylinder arrangement. 
The effect of the cylinder spacing on the Nusselt number for 
the upper cylinder was considered. It is observed that the 
cylinder spacing has a weak effect on the Nusselt number. 
The effect of the orientation angle between the two cylinders 
on the Nusselt number was studied next. The Nusselt number 
is strongly dependent on the relative orientation angle. It 
becomes maximum at an orientation angle 90°. The effect of 
diameter of the lower cylinder on the Nusselt number of the 
upper cylinder was also investigated. The overall result was 
that the larger the level of flow disturbance, the higher will 
be the Nusselt number. The level of disturbance is indeed a 
function of the engagement of vapor bubbles generated from 

the lower cylinder with the upper cylinder. As a result, a larger 
cylinder imposes larger disturbances which in turns enhance 
the Nusselt number on the upper cylinder. The number of 
cylinders was increased in order to investigate the effect of 
the adjacent cylinders on the overall Nusselt number. Two 
arrangements (regular and staggered) were considered, and 
the cylinders were arranged in different numbers of rows. 
The effect of the number of rows on the Nusselt number of 
the cylinders in the upper row was investigated for every 
arrangement, and a comparison was made between the two 
arrangements. It was found that the Nusselt numbers on 
the upper cylinders are more non-uniform in the staggered 
arrangement compared to the regular arrangement. Also, 
the overall Nusselt number was higher for the upper row in 
staggered arrangement compared to the regular arrangement. 
In fact, the results of this section can be used for design, 
manufacturing and optimization of the heat exchangers 
wherein the film boiling regime exist.
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Fig. 2. The shape of the interface at 5, 10, 15s




