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ABSTRACT: Feasible sets and robust feasible sets have an indispensable role in a priori stability 
guarantee of the constrained systems and in model predictive control. This article presents two algorithms 
for generating these sets for constrained linear time-invariant systems. Because the conventional 
algorithms for generating these sets must be applied iteratively over time, they are incapable of dealing 
with systems having the input vector constructed in any domain other than the time domain. The new 
algorithms, presented in this article, remove this limitation by treating the input vector monolithically 
over the time horizon. The presented algorithm for computation of the robust feasible set is capable of 
incorporating disturbances as well as parametric uncertainties that can be formulated as polytopes. For 
the verification, the results of the proposed algorithms were compared with results of the conventional 
methods in a similar circumstance. Finally, examples are presented to compare the computation times 
of the proposed algorithms with the conventional ones and to illustrate the effect of input vector 
parametrization, employing orthonormal functions, on the feasible region and the robust feasible region. 
Results showed that the parametrization improved the feasible set and robust feasible set.

Review History:

Received: 
Revised: 
Accepted: 
Available Online: 

Keywords:

Feasible set

Robust feasible set

Parametrization

 Orthonormal functions

 Model predictive control 

1

1- Introduction
Feasible set is one of the major elements of control algorithms 
for constraints systems. The set is defined as a subset of the 
state space for which there exists a control law that satisfies 
all constraints. The volume of these sets relates closely to 
the control horizon and grows with the growth of the control 
horizon [1]. Similarly, robust feasible set is defined as a subset 
of the state space for which there exists a control law that 
satisfies all system’s constraints for every possible disturbance 
scenario [2]. These sets are positively invariance [3] and they 
provide a priori knowledge of recursive feasibility and robust 
recursive feasibility for model predictive control method [4].
The problem of the computational complexity of model 
predictive control has evoked a number of solutions. Among 
the solution methods, parametrization of the input vector has 
proved to be a successful scheme to provide a reduction in 
computational burden as well as to guarantee stability [5, 6].  
This paper provides algorithms to systematically determine 
feasible sets and robust feasible sets for systems in which the 
input vector is parametrized via orthonormal functions. 

 
2- Background
The following uncertain dynamical system with state and 
input constraint is considered in the paper: 
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 where the uncertain terms Acl (w
p (i)), B(wp (i)) and wd (i) are 

confined inside some polytopes which contain  the origin as 
an interior point. For such system the feasible set XF (Np ) is 
defined as: 

(2)
( ) ( ) ( ) ( ) ( ){

( ) }
0 |  , , , 

 0,1, , 1, 

n
F p

p p T

N x v i Kx i v i x i

i N x N

= ∈ ∃ + ∈ ∈

= − ∈

   



Similarly, the robust feasible set is defined as:
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3- Results and Discussion
3- 1-  Parametrization of linear time-invariant systems via 
orthonormal functions 
The general form of orthonormal functions is obtained from Corresponding Author: Email: Naraghi@aut.ac.ir 
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Takenaka-Malmquist equation [7]:
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in which , 1j jξ ξ∈ <   are stable poles of the functions and 
̅ ξ is the complex conjugate of ξ. For , 0 1j j a aξ ξ= = ≤ <  the 
network reduces to Laguerre network which is the simplest 
orthonormal basic functions. 
The orthonormal functions (4) have the ability to capture 
the control signal v(i) in Eq. (1) via a parametrization. For a 
single input system, the Laguerre parametrization is 
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in which η is the vector of new decision variables. Using Eq. 
(5), the parametrized system is:
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3- 2- Computation of feasible sets for the orthonormal 
parametrized systems
Because the decision variable vector η of the parametrized 
system Eq. (6) does not have a one-to-one correspondence 
with time, the traditional algorithm for generating feasible 
set, expressed in reference [1] for instance, fails to be applied. 
Therefore, a new algorithm should be devised to produce 
such set. The core idea is to use batch Eqs. (6) where all input 
and state elements are stack together in appropriate vectors. 
The batch equation for Eq. (6-a) of a nominal system, i.e. Acl 
(wp (i))=Acl, B(wp (i))=B, wd (i)=0, is: 
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where SX and SU are appropriate convolution matrices. Using 
Eq. (7), the constraints which are shown in Eqs.(6-c) to (6-e) 
can be modelled as:
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where ΣX,ΣK,ΣU are appropriate diagonal matrices of constraint 
sets. Similarly, σX,σU are appropriate vectors related to the 

constraints. 
Using Eqs. (7) and (8), the algorithm of the feasible set XF 
(Np,N) for the parametrized system which is shown in Eq. 
(6) is: 
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3- 3- Computation of robust feasible sets for the orthonormal 
parametrized systems
Similar to Eq. (7) the batch equation for an uncertain system 
with a disturbance term wd is: 
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Then, the robust feasible set for the parametrized system Eq. 
(6) is:
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Figs. 1 and 2 compare the result of the proposed algorithms 
with the result of references [1] and [2] for a special condition 
in which the orthonormal network generates same basic 
functions as the Finite Impulse Response (FIR) network, i.e. 
a=0.N=Np. The system matrices are:

Figure 1. Comparison of feasible sets computed by the proposed 
algorithm and reference [1].
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4- Conclusions
This paper presents algorithms to determine feasible sets and 
robust feasible sets for systems in which the input vector is 
parametrized via orthonormal functions. Then, the algorithms 
are applied to a system where the Laguerre function is used 
to parametrize the input vector. The comparison of the result 
shows the validity of the proposed algorithms.  
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