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ABSTRACT: In this paper, ¬free vibration analysis of the rotating thin-walled composite beams 
with embedded shape memory alloy wires is represented. Pre-strained shape memory alloy wires are 
embedded in the middle of the cross section of thin-wall composite beam, symmetrically. The one-
dimensional thermo-mechanical constitutive law suggested by Liang-Rogers is applied to model the 
thermomechanical behavior of shape memory alloy wires. The differential governing equations are 
extracted by using the extended Hamilton’s principle based on first-order shear deformation theory. By 
heating the thin-walled beam, strain recovery operation will produce a tensile force along the longitudinal 
thin-walled beam. In order to solve the governing equations, the extended Galerkin method is used. 
The effect of rotational speed, recoverable strain limit, pre-twist angle, number of shape memory alloy 
wire and temperature difference on the natural frequency in temperature above the austenite finish are 
illustrated.  It is found that the natural frequencies of rotating thin-walled beam increase as the number 
of shape memory alloy wires and compressive pre-strained shape memory alloy wires increases. In 
addition, results are in good agreement with those obtained in the literature.
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1- Introduction
Shape Memory Alloys (SMAs) are a class of metallic alloys 

that can return to initial configuration in response to stress 
and/or temperature changing. These SMA are comprised 
of two crystallography phases, namely, austenite (high-
temperature phase) and martensite (low-temperature phase). 
In the composite structures, SMA wires can be embedded 
into the matrix such as carbon fibers. When an SMA wire is 
heated, the martensite phase transformed to austenite phase. 
Therefore, by heating up and changing phase to austenite a 
compression in the SMA wires are introduced and natural 
frequencies are changed. Lau [1] presented both theoretical 
and experimental vibration behavior of SMA composite beam 
with different boundary conditions. In another study, Lau et 
al. [2] are evaluated natural frequency of an SMA composite 
beam with clamped boundary condition as a theoretical and 
experimental. Barzegari et al. [3] investigated the natural 
frequency of an SMA composite beam with different 
boundary condition based on the three various models as 
Euler-Bernoulli, Timoshenko and third order beam theory.

In the last years, the theory of rotating blades modeled 
as thin-walled composite beams with arbitrary closed 
cross-sections frequently used by researchers [4-7]. For 
instance, Fazelzadeh and Hosseini [5] studied the vibration 
characteristics of rotating Functionally Graded Materials 
(FGM) thin-walled beam under high temperature gas flow.  
Librescu et al. [6] investigated the behavior of rotating thin-
walled beam which made of FGM subjected to temperature 

environment. 
To the best of author’s knowledge, no investigation has 

been done on the vibration characteristics of rotating thin-
walled composite beam with embedded SMA wires. The goal 
of this paper is to present the natural frequency analysis of 
rotating thin-walled SMA composite beam. The dynamic 
equations are obtained using extended Hamilton principle 
based on the first order shear deformation theory. It is assumed 
the SMA wires are embedded in the thin-walled beam with 
compressive pre-strained load. The result elucidated that by 
increasing numbers of SMA wires and angular velocity, the 
first three natural frequencies increase.

2- Thermo-Mechanical Behavior of SMA Material 
The axial force introduced in the longitudinal direction of 

SMA wires due to temperature field is expressed as [3]:

 where ,  ,  c c cE Aα are coefficient of thermal expansion, 
Young’s moduli and the cross-sectional area composite beam 
without SMA wires of matrix respectively. Θ and SMAA are 
coefficient of thermal expansion and the cross-sectional areas 
of the embedded SMA wires, respectively. 0,  T T  are the 
temperature field and reference temperature fixed at 20 Co

. ξ , ψ  indicate martensite fraction of SMA wires and phase 
transformation tensor, respectively.*Corresponding author’s email: nozar@ssau.ac.ir
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3-  Governing Equations of Motion
Fig. 1 indicated a straight and pre-twisted flexible thin-

walled rotating beam of length L , mounted on a rigid hub 
of radius 0R  at the presetting angle γ . It is assumed that 
the thin-walled beam rotate at a constant angular velocity Ω
about Y axis. 

Three different alignments of SMA wire embedded in 
the thin-walled beam are shown in Fig. 2. The equations of 
motion and associated boundary conditions of rotating thin-
walled beam can be obtained through the use of extended 
Hamilton’s principle as follows [6].

Governing equations:

Boundary conditions:
At 0z = ,

At z L= ,

4- Method of Solution
In order to solve the coupled partial differential equations 

(Eq. (2)), extended Galerkin’s method is applied. In this 

Fig. 2. Alignment of SMA wire (a) 4 numbers of SMA, (b) 8 
numbers of SMA, (c) 12 numbers of SMA

Fig. 3. variation of first three natural frequencies as a function 
of angular velocity for three different numbers of SMA wire 

embedded in the thin-walled blade 
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Fig. 1. (a) The schematic of rotating thin-walled beam, (b) Cross 
section of thin-walled beam 
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method, we express the displacement fields as a product of 
weight function and generalized coordinates as follows [5]:

where U , V , xΘ and yΘ are the weight functions that 
satisfied the boundary conditions, and uq , vq , xq  and yq  
are time dependent vector of generalized coordinates. By 
substituting displacement fields (Eq. (4)) into governing 
equations, the matrix form of equations are achieved as

where M  and K are the mass and stiffness matrix, 
respectively. Also, (t)q is the generalized coordinate system. 
The natural frequency of dynamic rotating thin-walled 
beam system are obtained by substituting the generalized 
coordinates as ( ) tq t eωη=  in Eq. (5). So we have,

5- Result and Discussion 
In the present paper, the vibration characteristics of rotating 

thin-walled beam with embedded SMA wires are analyzed. 
For example, Fig. 3. Shows the influence of number of SMA 
wires on the first three natural frequencies of rotating thin-
walled composite SMA beam as a function of rotating speed 
Ω . In this figure we take 6.7%Lε = , 70 CoT = , 0γ = and 

0 45oβ = . 
The results show that by increasing the number of SMA 

wires ( N ) the first three natural frequencies increase. This is 
to be expected, because the increase of number of SMA wires 
yields an increase tensile force due to strain recovery action 
of the pre-strained SMA wires in the longitudinal directions. 
Also, it can be observed that the first three natural frequencies 
increase with the increase of rotating speed.

6- Conclusions
The natural frequency analysis of rotating thin-walled 

beams with embedded shape memory alloy wires under 
uniform temperature field have been investigated based on 
the first order shear deformation theory and using extended 
Galerkin’s technique. The dynamic equations are obtained 
using extended Hamilton principle. It is supposed the SMA 
wires embedded in the thin-walled beam with compressive 
pre-strained load. Here, the effect of number of SMA wires 
and rotating velocity are presented. The result reveal that by 
increasing numbers of SMA wires and angular velocity, the 
first three natural frequencies increase.   
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