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ABSTRACT: In this paper, an approximate solution based on the Rayleigh’s method is sought to analyze 
the vibration behavior of Euler-Bernoulli cracked beam resting on an elastic foundation. The modeling 
of the elastic foundation is implemented using the Winkler elastic spring theory and the stiffness factor 
of the elastic spring is specified corresponding to material characteristics of the elastic foundation. The 
Dirac’s delta function is used to apply the crack opening mode in the equation of the Rayleigh in which 
the factor of this function can be identified in terms of the stiffness factor of an equivalent rotational 
spring by considering material and geometric parameters of the crack. In the present analysis, explicit 
relationships are originally established to obtain the natural frequency in three boundary conditions of 
simply supported-simply supported, clamped-free and clamped-clamped. In this method, the natural 
frequency of the first mode is determined as the ratio of the maximum enriched potential energy to the 
maximum kinetic energy. Based on these relationships, the effects of the crack depth, the crack location 
and the elastic foundation on the response of natural frequency of the beam are investigated. The results 
of the analysis demonstrate that increasing the crack depth decreases the natural frequency of the beam 
containing the crack; while the elastic foundation increases the natural frequency of the cracked beam. 
The comparison of the results of proposed relations with those of full modeling of the structure in 
ABAQUS software shows a reasonable accuracy of the present analysis.
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1. INTRODUCTION
The modeling of beams resting on the elastic foundation

is used in the analysis of structures like building, highways 
and railroads. Since the presence of the crack in the structure 
increases the complexity of the analysis, accurate and 
simple models have been proposed by many researchers for 
investigating the mechanical behavior of the cracked beams. 
The crack was firstly modeled by using the rotational spring 
[1] and it was then completed by Irwin [2]. In the last paper,
the crack has been modeled by using a linear rotational spring, 
while the concepts of the fracture mechanics are considered
to determine the stress intensity factor. Relations between
the stiffness factor of the rotational spring and material and
geometric parameters of the cracked structures have been
studied in Refs. [3-5]. The model of the linear elastic springs
can properly simulate the behavior of the elastic foundation
and the interaction between structures and soil. Based on
the Winkler-Pasternak model, a free vibration analysis for
clamped-free cracked beams was performed by Akbas [6].
Three analytical (exact solution), approximate (Galerkin)
and numerical (finite element) approaches were used to
investigate the bending behavior of the cracked beams resting
on the elastic foundation in Ref. [7].

In this paper, new equations are proposed to determine 

the natural frequency of the cracked Euler-Bernoulli beams 
resting on the elastic foundation. The governing differential 
equation of the cracked beam is written based on the Dirac’s 
delta function whose factor is obtained in terms of the 
material and geometric parameters. The elastic foundation is 
modeled by a uniformly distributed linear springs, which the 
foundation characteristics specify the spring stiffness factor. 
Two valuable achievements of derived explicit equations are 
the simplicity of those and the proper accuracy of obtained 
results. The comparison of obtained results is performed by 
a complete modeling in ABAQUS software. The effects of 
the crack depth and location and the elastic foundation on 
the natural frequency results are investigated in different 
boundary conditions. 

2. FORMULATION
Equations in three sub-sections including the crack

modeling, Winkler foundation model and Rayleigh method 
are represented to derive the explicit formulation of the 
natural frequency. 

2.1. Crack modeling
Figs. 1b and 1c indicate two models for the crack 

illustrated in Fig. 1a. The discontinuous model shown in Fig. 
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1b is applied in the presented modal analysis, which the factor 
of γ  used in Dirac’s delta function is calculated in terms of 
the stiffness factor of equivalent spring ( sk ). 
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in which 
sk is determined in terms of geometric and 

material properties as:
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Inserting Eq. (3) into Eq. (2) gives γ  and then the flexural 
stiffness is obtained from Eq. (1). 

2.2. Winkler elastic foundation model
One of common models in the analysis of the elastic 

foundation is to use the distributed linear elastic spring or 
Winkler model as shown in Fig. (2). In this model, soil is 
assumed as a homogenous and isotropic material into the 
linear elastic region [8]. 

The approximate solution of the presented problem has 

been carried out based on Rayleigh method. In this method, 
the natural frequency is determined by the ratio of the 
potential energy to the kinetic energy.
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Also, the kinetic energy is formulated as: 
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The deflection of the beam can be considered as a 
separable form of space and time variables [9]. 

( ) ( ), sinw x t X x tω=
 

(9)

Inserting Eq. (9) into Eqs. (5) to (8), the maximum 
potential and kinetic energies of the cracked beam resting on 
the elastic foundation is derived as:
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Since the total energy of an undamped vibration system 
based on Eq. (12a) is constant permanently, 

Constantst B
c cKΠ + = (12a)

An equality equation can be written by considering the 
maximum potential and kinetic energies as:

Max Max

st st
c cKΠ = (12b)
Therefore, the equation of the natural frequency can be 

determined as: 
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The natural frequency of the C-C cracked beams can be 
obtained from Eq. (12c) by considering the mode shapes as:

21 cos xX
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Fig. 1. a) Euler-Bernoulli cracked beam; b) Discontinuous 
model of flexural stiffness; c) Rotational spring model

Fig. 1. a) Euler-Bernoulli cracked beam; b) Discontinuous 
model of flexural stiffness; c) Rotational spring model

Fig. 2.  Model of Winkler elastic foundation in cracked 
beam 

Fig. 2.  Model of Winkler elastic foundation in cracked beam
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An explicit equation for C-C cracked beams is derived by 
inserting Eq. (13) into Eqs. (10) and (12c)
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in which parameters of 1ζ  and 2ζ . are defined as: 
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2.3. Numerical modeling
In this research, the numerical modeling of the cracked 

beam resting the elastic foundation is performed in ABAQUS 
software based on the integral contour method.

3. Results and Discussion
In this section by using some case studies, the effects of

the crack depth and location, and the elastic foundation in C-C 
boundary conditions on the natural frequency are investigated. 
Table 1 shows the geometric and material parameters used in 
the case studies, unless otherwise is mentioned. 

Fig. 3 shows that if the crack sits at 0 0.2x
L

=  or 0.8, the effect 
of the crack depth on the natural frequency can be neglected. 

Fig. 4. Effect of stiffness factor of elastic foundation on natural 
frequency in Simply-supported-simply supported

Table 1. Geometric and material characteristics of 
the cracked beam on the elastic foundation

Material 
characteristics 

Geometric 
characteristics 

2200e9 N / mE   3 mL   
0.3 0.3 mh   

0f   / 0.0 0.5a h    
37860 N / m 0 / 0 1x L    
24e7 N / mfE   3 mfL   

21e8 N / mfk   0.4 mfh   

Table 1. Geometric and material characteristics of the cracked 
beam on the elastic foundation

Fig. 3. The response of the natural frequencies of cracked 
beam on the elastic foundation in terms of different depths
and locations of the crack in clamped-clamped boundary
condition

Fig. 3. The response of the natural frequencies of cracked 
beam on the elastic foundation in terms of different depths and 
locations of the crack in clamped-clamped boundary condition

 
Fig. 4. Effect of stiffness factor of elastic foundation on natural 
frequency in Simply-supported-simply supported

Also, Fig. 4 illustrates the effect of the stiffness factor of 
the elastic foundation on the natural frequency. As shown in 
Fig. 4, increasing the stiffness factor of the elastic foundation 
increases the natural frequency in which increasing 5 times of 
the stiffness factor increases the natural frequency almost 8%. 

4. CONCLUSION
In this paper, novel equations for the modal analysis

of the Euler-Bernoulli cracked beam resting on the elastic 
foundation were proposed. The effects of the geometric and 
material parameters of the beam, the crack depth, the crack 
location and the stiffness factor of the elastic foundation are 
explicitly observed in the equations. ABAQUS was used to 
model the cracked beam and to compare the results of the 
proposed equations. The results show that increasing the 
crack depth decreases the natural frequency of the beam, 
while the elastic foundation increases the natural frequency.
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