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ABSTRACT: The nonlinear free flapping-torsional vibration of rotating beams is investigated in this 
paper. The presented equations are based on the exact geometrical formulation in conjunction with the 
Cosserat theory for rods. The equations of motion are reduced to the flapping and torsional equations of 
motion for symmetric rectangular beams by neglecting the shear deformation. The governing equations 
are coupled to each other with the non-homogenous boundary conditions. By employing the direct 
method of multiple scales the effective nonlinearity coefficients of nonlinear natural frequencies are 
extracted. After validation of the current results, the effects of the rotating speed on the type and the 
value of the effective nonlinearity coefficient of natural frequencies are examined. The sign of the 
effective nonlinearity coefficient demonstrates the softening or hardening treatment of the corresponding 
nonlinear natural frequencies. It is concluded that ignoring the flapping-torsional coupling due to the 
Coriolis force, for odd modes makes some errors in the magnitude of effective nonlinearity but the type 
of nonlinearity is predicted correctly. On the other hand, in the even modes for average to high rotation 
speed in addition to incorrect estimation of the magnitude of effective nonlinearity the different type of 
nonlinearity is also predicted.
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1- Introduction
Rotating beams are in sight in many industries, including

aerospace industry and wind, water and gas power plants. On 
the other hand, the sensitivity and high cost of the related 
structures demands their accurate modeling and precise 
prediction of their dynamics and vibration. Therefore, in 
this paper, their nonlinear flapping-torsional free vibration is 
investigated.

Da Silva and Hodges [1] analyzed the effect of different 
nonlinear terms including geometrical nonlinearity and 
the terms caused by aerodynamic forces on the stability 
of rotating blades. Valverde and Garcia-Vallejo [2] 
presented two different formulations using the absolute 
nodal coordinate formulation versus the exact geometrical 
formulation to analyze the stability of rotating beams. Arvin 
et al. [3] examined the nonlinear free vibration of flapping 
and longitudinal motions of rotating beams based on the exact 
geometrical formulation by the implementation of the direct 
Method of Multiple Scales (MMS). Arvin and Lacarbonara 
[4] developed the precise formulation for composite rotating
blades by providing nonlinear constitutive relationships for
composite materials. Arvin and Bakhtiari-Nejad [5] applied
the MMS on the discrete motion equations of rotating Euler-
Bernoulli beams to achieve the nonlinear natural frequencies
and the corresponding nonlinear normal modes.

After the literature review, it is observed that in studies 
conducted so far, the nonlinear free vibration analysis of 

coupled flapping-torsional motions caused by the Coriolis 
force has not been investigated. Therefore, in this paper, 
taking into account the Coriolis force, the value and sign of 
the Effective Nonlinearity Coefficient (ENC) (indicating the 
softening or hardening of the nonlinear natural frequency) 
is evaluated for composite rotating beams with symmetric 
layup and rectangular cross-section.

2- The Composite Rotating Beam Modeling
A schematic of a multi-layer rotating beam which rotates

by speed Rω  around axis 1i with length L , width b , 
thickness h  and rotor radius 3d is shown in Fig. 1(a). Two 
main coordinate systems are adopted to define the beam 
configurations; ke -system for stress-free and kb -system for 
the current configurations. A rotation tensor is determined to 
relate the two coordinate systems by employing an interface 
coordinate system (1)

ke presented in Figs. 1(b) and 1(c). 
3( , ) ( , )s t s s t= +r e u  is the position vector of the mass center 

of an arbitrary point along the beam span in the current 
configuration in which ( , )s tu  is the displacement vector of 
the considered point at position s . 

The governing equations are on the basis of the Cosserat 
theory for rods. The un-shear ability assumption is also 
adjusted. Due to the brevity all the mathematical procedures 
are dropped and the readers are invited to see references [3,4] 
for more illustrations. 

3- Solution Process
The direct MMS is applied on the dimensionless governing 

equations to derive the nonlinear natural frequency and the *Corresponding author’s email: hadi.arvin@sku.ac.ir
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associated ENC. Thereafter, the real-valued amplitude and 
phase modulation equations are, respectively, read as:

 

1

(1) 3
2 2 2 2 1, ,

1( ) 0, ( ) ( ) = ( )
4k k k k k ia T a T T a T    

In which 2T  is the slowest time scale [3], and 1, ,k iγ is the 
k th ENC. Accordingly, the steady state solution leads to:

 

2

(2) 0 02 0
2 2 1, , 2

1( ) = , ( ) =
4k k k ik k ka T Constant a T a T     

where 0
ka and 0

kβ are defined using the initial conditions. 
Thereafter, the k th nonlinear natural frequency is achieved 
by 0 2

1, 1, ,1, 1 4NL
k k ik kaω ω γ= + in which 1,kω is the k th linear 

natural frequency. It should be mentioned that the sign of 
1, ,k iγ  determines the softening and hardening treatment of 

the k th nonlinear natural frequency. 

4- Numerical Results
A rotating symmetric cross-ply laminated beam is

considered for evaluation with layup 0 / 90 / 90 / 0 
  
    , 

3 = 0.2(m)d , = 2(m)L , = 0.005(m)h and = 0.05(m)b . The Young 
and shear moduli, and the Poisson’s ratio and the mass 
density are, respectively, 1 2= = 9.6(GPa)E E , 3 = 145(GPa)E
, 12 = 3.4(GPa)G , 13 23= = 4.1(GPa)G G , 31 32= 0.3ν ν = , 21 = 0.5ν
, ( )3= 1389 kg/mρ . The ENC of the first flapping mode 1,1,iγ  is shown in Fig. 2 in comparison with the results of reference 
[4]. It is worth to note that reference [4] has ignored the
torsional motion by dropping the Coriolis force influence.
The computed values for the ENC are different however the
same sign is estimated. The ENC of the second flapping mode 
is depicted in Fig. 3. It is clear that after slow rotation speeds
the continuous hardening treatment predicted by reference
[4] alters to a softening behaviour in the present analysis.

The ENC of the first torsional mode is presented in Fig.
4. Fig. 4 illustrates that the ENC for stationary beams is zero
however by increasing the rotating speed due to the coupling
made by Coriolis force, it induces a monotonically enlarging
softening treatment.

Fig. 2. Variations of the effective nonlinearity coefficient of the 
first flapping mode 1,1,iγ  [current results (solid-lines) and Arvin 

and Lacarbonara (2014) [4] results (dashed-lines)]

Fig. 3. Variations of the effective nonlinearity coefficient of the 
second flapping mode 1,2,iγ  [current results (solid-lines) and 

reference [4] results (dashed-lines)]

Fig. 4. Variations of the effective nonlinearity coefficient of the 
second flapping mode 1,1,iγ  [current results (solid-lines) and 

Arvin and Lacarbonara (2014) [4] results (dashed-lines)]

Fig. 1. (a)-Schematic of rotating composite beam, (b)-Interface 
coordinate system, (c)-Current coordinate system
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5- Conclusions
In this paper, the nonlinear free vibration of symmetric

rotating composite un-shear able beams was studied regarding 
the flapping-torsional motions. The most important results 
read as:

1. The first torsional mode represents a softening treatment
for rotating beams; 

2. In the first flapping mode, the sign of the effective
nonlinearity coefficient estimated in both cases, the flapping-
torsional and the flapping-axial examinations, is the same. 

3. The sign of the effective nonlinearity coefficient for the
second flapping mode is identical for the flapping-torsional 
and the flapping-axial investigations just at low rotational 
speeds.
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