
Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 52(12) (2021) 861-864
DOI:   10.22060/mej.2019.15617.6172

Transient Response of Annular Sandwich Plate with Functional Graded Core Combined 
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ABSTRACT: In this study, the transient response of the symmetric annular sandwich plate, with 
functionally graded core and piezoelectric layers, is investigated. It is also assumed that the sandwich 
plate is under external harmonic force and electrical voltage. Based on the power function model, it is 
assumed that the properties of the core material vary in the direction of the core thickness. To express the 
displacement field, the third order shear deformation theory is used. By use of the Hamilton principle, the 
structural equations are obtained in terms of displacement components and solved using the differential 
quadrature method. Finally, the time response is evaluated in terms of variations in effective parameters 
such as internal radius, power function index, core thickness and external voltage. The simulation results 
showed that the amplitude of the oscillations decreases when the internal radius of plate to be increased, 
in the desired time interval. In addition, by increasing the index parameter of the power function, the 
time response range increases. Finally, by applying external electrical voltage, the vibration amplitude 
of plate reduced and this advantage is used in control of vibrating systems. 
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1- Introduction
Circular and annular composite plates are widely used

in mechanical, construction, nuclear, submarine, aerospace 
and computer industries. In addition, due to the increasing 
use of piezoelectric materials in intelligent structures, many 
researchers focus on plates that have piezoelectric layers. 
viliani et al. [1] investigated the problem of buckling control 
of rectangular Functional Graded Material (FGM) plates 
with sensor and actuator layers. phung et al. [2] presented 
an efficient method for dynamic control of piezoelectric 
composite plates. In this study, the governing equations are 
obtained by the general Lagrangian method using the Van 
Denmark strains and solved by the Newmark numerical 
method. Narayanan and Balamurugan [3], using finite element 
method and first-order theory to controlled the vibration of 
plates and shells integrated with piezoelectric layers. Wang 
[4], investigated the symmetric bending of angular plates 
under uniformly distributed loads using classical theory 
and first-order shear deformation theory. Sahraee and 
Saidi [5] also used the third-order shear theory to study the 
symmetrical bending of circular FGM plates and to express 
the corresponding solutions in terms of classical theory. In 
the present paper, due to changes in the properties of FGM 
materials in thickness direction and  the inherent thickness 
of the plate, a third order shear theory that is more accurate 
in such problems is used for modeling circular plate made of 
functional gradient material integrated with the Piezoelectric 

layers under transient pressure and electrical loading.

2- Governing Equations
The geometry of the problem is shown in Fig. 1. The

property of the functional materials is that the properties of 
the materials used in the structure are variable in thickness 
direction. Changes in the mechanical properties of the core 
are expressed by power law. On the other hand, the external 
load ( , )q r t  is also logged in.

As stated above, the core layer is assumed to be a 
functionally graded material which is combination of 
ceramics and metal, so that it is pure ceramic at above of 
the core, ( )

2
ehz = , and pure metal at the bottom of the core 

( )
2

ehz −
= , (In this case, it is assumed that the properties of core 

material, such as the modulus of elasticity, ( )E , and mass 
density, ( )zρ , vary by thickness.
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According to the power function model, variation of core 
mechanical properties can be expressed as [6].

In these equations, the subtitle m and c respectively 
represent the metal (herein aluminum) and the ceramic (herein 
are silicon). K is an index of power function that has values 
greater than zero. The displacement field in r and z direction *Corresponding author’s email: nozar@ssau.ac.ir
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in terms of the Reddy theory (third-order shear deformation 
theory) for an arbitrary point of the structure is expressed as 
follows [7]:
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Hamilton’s principle is used to obtain the governing 
equations. Finally, the governing equations of motion are 
solved by the numerical solution of square differences, which 
was first proposed by Bellman and Casti [8] in 1971.

3- Results and Discussion
Prior to expressing the results, we will be able to verify the

relations obtained in this paper. For this purpose, the first and 
second non-dimensional frequencies of a annular plate with 
clamped boundary conditions are obtained and compared 
with reference [9] in Table 1, for different radial ratios. Note 
that the first-order shear deformation theory and Rayleigh’s 
numerical solution is used.

According to the results of Table 1, the accuracy of the 
obtained relationships can be observed. In the following, the 
time response when making changes to effective parameters 

such as aspect ratio, power function index and applied voltage 
are discussed on the plate response. In Fig. 2, the effects of the 
power function index on the system response are shown. The 
power function index states that the properties of functional 
materials used in the core in terms of thickness differ and 
are a function of the properties of aluminum and silicon. As 
can be seen from the figure, with the increase of the index 
parameter, the amplitude of the time response increases.

In Fig. 3, the effects of the core thickness on the plate time 
response are investigated. As seen from this figure, the time 
response amplitude is increased by increasing the thickness 
of the core. It seams that, with increasing core thickness, 
the natural frequency of the sheet is close to the excitation 
frequency. Therefore, despite the increased hardness of the 
plate, the range of oscillations has increased.

4- Conclusion
Based on the results of this research, the following

quantitative and descriptive results are obtained:
With increasing internal radius, the range of plate 

oscillations decreases in the desired time domain. This is due 
to an increase in the relative hardness of the plate, despite the 

Fig. 2. The flow field and boundary conditions

Fig. 3. Verification of straight-bladed turbine total moment 
coefficient

Fig. 1. Comparison of total moment vs. azimuth angle for 30 RPM

Table 1. Turbine characteristics
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boundary conditions on the inner edge.
Increasing the index parameter of the power function 

increases the response time of the plate. This is due to the 
change in the properties of the core from ceramic to metal. 
In addition, by increasing the index, the power function 
responds to the plate response to an asymptote that represents 
the entire metal core.

Changing the thickness of the core increases the hardness 
of the plate, which naturally leads to a decrease in the 
amplitude of the response. In addition, due to the change in 
the plate frequencies and the harmonic excitation, in some 
thickness ratios, the amplitude has increased.
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