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ABSTRACT: Understanding the process of muscle tissue growth is important to professionals who 
are involved in curing musculoskeletal disorders, physical medicine and rehabilitation specialists 
and orthopedic surgeons. This article investigates the development of a musculoskeletal cell and also 
determining the vulnerable areas of biceps femoris muscles due to passive strains applied on it. By 
decomposing the deformation gradient tensor to two parts, the elastic and growth, the finite growth relations 
have been applied for an isotropic hyperelastic muscle material behavior. Consequently, the continuum 
relations were combined with the growth evolution equation whrer a series of mechanobiological 
relations were obtained. To solve them, a FORTRAN user-defined material subroutine (UMAT) for the 
finite element Abaqus software was written and executed. The biceps femoris – long head muscle was 
simulated based on a 6-week period assuming as a cylinder with 10% increase in initial length. Results 
of the simulation indicate that maximum strains occur in the surfaces, not inside the muscle. They reach 
1.045 near the proximal muscle-tendon junction in the posterior layer and 1.06 in distal muscle-junction 
in interior surface. Also, these results can help a correct and optimal treatment, patient’s rehabilitation 
and orthopedic surgeries.
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1- Introduction
One of the most common musculoskeletal problems is the
shortening of hamstring muscles, which can be caused by
various factors such as inactivity, chronic neurological
diseases or spinal cord injury. This muscle shortening results
in the patient’s limited range of motion and numerous clinical
problems [1]. To treat this disease, the muscle must be
stretched in accordance with physiotherapy method to grow.
The key question is how much and where are the maximal
stretching locations during muscle growth? What is the
process of muscle growth over time? The main unit of any
muscle tissue is the sarcomere, which consists of two groups
of actin and myosin. When the muscle is stretched, it results
in a gap between these two groups. In this study, by applying
soft tissue growth simulation, in addition to identifying the 
accurate location of the maximum stretch during growth 
process, the optimal time duration care of the muscle has 
been determined.

2- Methods
In order to simulate the growth of muscle, a single cubic 
element was considered as a skeletal muscle cell. Then the 
governing equations obtained by combining the continuum 
mechanics and growth evolution, were coded in an User-
defined MATerial (UMAT) subroutine written in FORTRAN. 
The numerical simulation was performed in Abaqus/implicit 

software in conjuction with a UMAT for soft tissue behaviour. 
Finally, a cylinder was considered as the Biceps femoris long 
head, which is one of the hamstring muscles, and its growth 
and severe strains were investigated. This simulation is based 
on a continuum model developed by Zöllner et al. [2]. Hence, 
the basic equations of this model are shown below.
One of the most important assumptions required for finite 
growth is decomposition of deformation gradient tensor, 
Such that
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In this simulation, muscle growth is modeled only by 
increasing or decreasing the sarcomeres along the fibers, 
therefore, an inelastic deformation gradient proposed for this 
growth type is as follows [2] 
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where I  is the identity tensor, 0n  is the initial material 
direction, and ϑ  is a growth variable that represents the 
relative serial sarcomere number. In order to extend  simple 
equations for soft tissue, it is assumed that such growth to be 
homogeneous with isotropic properties. In addition, a strain 
energy function of  Neo-Hookean type is adopted, as 
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where 1c  and 2c  are the Lamé constants, eC  is the 
elastic right Cauchy green tensor, and eJ  denotes elastic 
volume change. The second Piola-Kirchhoff stress tensor 

2 ψ= ∂ ∂S C and the fourth-order Lagrangian elastic 
tensor 24 ψ= ∂ ∂ ⊗∂L C C  are derived from the second 
law of thermodynamics. Furthermore, the Kirchhoff stress 

tF S Fτ =  is obtained using a push-forward operation. In 
this simulation, the evolution Eq. (4) is adopted to calculate 
the relative serial sarcomere number [2]. 
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where max max1 1gk
γ

τ ϑ ϑ ϑ = − −   is the adaptation func-
 tion and critg eφ λ λ= 〈 − 〉  is the adaptation criterion. To solve
 the nonlinear equations, a finite element computational model
 was implemented in conjunction with an user subroutine by
implicit solver of the Abaqus/standard version 6.13. The rela-
tive sarcomere number ϑ  is introduced as an internal vari-

able and then its evolution Eq. (4) is solved using a finite-dif-
 ference approximation method. After determining the amount
 of new sarcomere ϑ , the growth gradient deformation gF
is calculated from Eq. (2) and the elastic gradient deforma-

 tion eF  from Eq. (1), too. Finally, the true Cauchy stress
abaqus J=σ τ , which the user-defined subroutine in Abaqus/

.standard utilizes, is calculated to be applied to the muscle

3- Cylindrical shape muscle model
A  cylindrical shape muscle finite element model with a
height of 400 mm and a diameter of 20 mm is illustrated
in Fig. 1. After a mesh sensitivity procedure, a model
with 53487 elements including 38556 linear hexagonal
elements of type C3D8 and 14931 linear wedge elements
of type C3D6, was generated. For increasing computational
efficiency in modeling, because a tendon is much stiffer than
muscle tissue, it has been assumed as a rigid member [3].
Biceps femoris’s fibers are drawn from distal to proximal in a
closed and parallel manner [4]. In this study, this direction is
aligned with the stretch axis. The head of the muscle which is
attached to the Fibula bone are considered as a movable and
the head of the muscle is attached to the ischial tuberosity
bone as a fixed boundary condition as well. The boundary
conditions and the material parameter are shown in Fig. 1 and
Table 1 respectively.

Fig. 2. Dynamic changes in the sarcomere length.

Fig. 3. The longitudinal-section view of the muscle after stretching 

Fig. 4. Dynamic changes in the sarcomere number

Fig. 1. Finite element model of  the assumed cylindrical shape 
muscle
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4- Results and Discussion
The simulation results of the dynamic changes in sarcomere
length for the element with maximum amounts of elastic
stretch are plotted in Fig. 2. The graph was drawn in response
to a 10% increase in muscle length for a 6-week treatment
period. According to this graph, the elastic stretch eλ
decreases from 1.06 to 1 after this time duration. Furthermore, 
a significant decrease in the elastic fiber stretch during the
first two weeks not only does ease the pain but also indicates
a high chance of injury at this time.
Fig. 3 shows the cross-sectional view of the muscle after
stretching. The red circles represent the maximum stretch
location and the blue circles indicate the minimum ones.
As can be seen from this figure, these points are the closest
points to the myotendinous junction and are located on the
inner and outer surfaces of the muscle. De Smet and Best
[5] applied magnetic resonance imaging to 15 athletes with
hamstring muscle injuries. They showed that all of these
injuries occurred adjacent to myotendinous junction.
Fig. 4 shows the dynamic changes in the number of sarcomeres 
that were normalized versus to 6 weeks of treatment in
response to a 10% increase in muscle length. The growth of
sarcomeres was high in the early weeks, leading to a greater
flexibility rate than the last weeks.

5- Conclusion
In this study, a biceps femoris long head muscle considered as
a cylinder with a model of soft tissue growth was simulated
numerically.In this study, a numerical model of soft tissue

growth was simulated on a cylinder assumed as a biceps 
femoris long head muscle. An isotropic behavior and a Neo-
Hookean elastic model were used for the muscle material. 
The results showed that the rapid growth of sarcomeres, 
which lead to severe pain, occurs within the first weeks of 
treatment duration. Furthermore, the most critical points that 
tolerate maximum stretch are located in the proximal area on 
the posterior surface and the distal area on the interior surface 
of the muscle and on the myotendinous junction. The results 
of this simulation are in accordance with the results of an 
investigating of clinical magnetic resonance imaging for 15 
athletes with hamstring muscle injuries.
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1

1c 2c   max crit
16 kPa 4 kPa 0.5 2.0 1.1 1.01 

Table. 1. The material parameters
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