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ABSTRACT:  In the standard finite element method, the edges of the adjacent elements are aligned to 
each other, and the corner of an element does not locate on the edges of another one. If this constraint 
violates, the mesh is called non-conforming and the use of such meshes in the finite element method 
requires specific techniques. In the present paper, a new method is suggested for treating non-conforming 
meshes. Non-conforming meshes appear generally in adaptive mesh refinement processes especially 
in the quadtree mesh refinement algorithm. The quadtree is a data structure with an extremely fast 
recursive algorithm and is used to divide a two-dimensional domain into sub-regions or elements. In 
the present paper, a new approach is proposed to construct the shape functions of such elements. In 
this method, the shape functions are considered harmonic functions and the Laplace boundary value 
problem is defined and its solution is used as the shape functions of the non-conforming elements. To 
evaluate the applicability and accuracy of the proposed method, two numerical examples are solved and 
the results are presented. The results show that the proposed method can be used to effectively apply the 
non-conforming meshes in the finite element method. 
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1- INTRODUCTION
Harmonic coordinates are one of the most appealing 

ideas to drive the approximation functions. The first use of 
harmonic functions for Two-Dimensional (2D) interpolation 
was published in Ref. [1]. The first use of harmonic 
approximation functions for the solution of boundary value 
problems was appeared in Ref. [2] in which it proofed that 
such approximation functions form a partition of unity and 
exactly reproduce a linear field. These functions also possess 
the Kronecker delta property. Harmonic functions satisfy the 
elliptic Laplace equation with positive boundary conditions. 
Therefore, the approximation functions are non-negative in 
the element interior. To the best knowledge of the authors, 
a few papers have been published based on the application 
of harmonic shape functions in the Finite Element Method 
(FEM). For example, refer to Refs. [2-6]. In the previous 
works, the shape functions were defined in the global 
coordinate system and seeking the numerical solution of 
the Laplace equation was unavoidable. For instance, the 
methods such as finite difference method [2], the method of 
fundamental solutions [4], the boundary element method [5], 
the complex variable boundary method [6] and the FEM is 
used [3] to approximate the harmonic shape functions

To avoid the numerical solution of the Laplace equation, 
the shape functions are derived here in the local coordinate 
system for a representative master element. Therefore, the 
harmonic shape functions can be obtained analytically using 

the Fourier series. In addition, a new procedure is proposed 
here for systematic computation of the shape functions. In 
this approach, a small set of harmonic functions are defined at 
first as the building blocks and then all of the shape functions 
of different elements with different node arrangements are 
derived using proper transformations of them.

To evaluate the performance and the potentials of the 
proposed method the Laplace equation is selected in the 
present manuscript as the model equation. Two benchmark 
examples are solved and the results are presented. In these 
examples, the patch test and convergence analysis are done. 
The results have shown that the proposed method treats non-
conforming elements very naturally and efficiently. A lot of 
development is still to be done in the applications of harmonic 
shape functions and we believe it can begin an interesting 
field of research.

2- QUADRILATERAL ELEMENTS WITH MIDSIDE 
NODES

Consider a set of quadrilateral elements with midside 
nodes and linear variation of the shape functions on the 
element boundaries. In the most general case, the quadrilateral 
elements with midside nodes consist of 5 different element 
types which are shown schematically in Fig. 1. All of these 
elements are compatible with traditional linear Lagrange 
elements and a composite mesh with standard elements and 
elements with harmonic shape functions is possible.
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3- ROOT FUNCTIONS
Different element types in Fig. 1 contain a total of 32 nodes 

and each node has its own shape function. All of these shape 
functions can be constructed using only 4 Root Functions 
(RFs) and proper coordinate transformations. To explain this 
more consider Fig. 2. In this Figure, the boundary conditions 
for obtaining the RFs on the boundaries of the square domain 
α, β [-1,1] in the Root Coordinate System (RCS) are given.

The value of the RFs on the entire boundary of the square 
domain is given in Fig. 2. In fact, we seek the value of the 
RFs at the internal points of the square domain. In the present 
work, the Laplace boundary value problem is used here to 
obtain RFs in the internal points. The method of separation 
of variables and series solution are used to obtain the analytic 
solution of the Laplace boundary value problem [7]. The 
general solution of this boundary value problem is as follows.
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where the coefficients 1
nA  to 3

nB  are dependent on 
boundary conditions given in Fig. 2. The surface plots of the 
four root functions are shown in Fig. 3.

4- HARMONIC SHAPE FUNCTIONS
The shape functions of element types A to E can be obtained 

using the four RFs with proper coordinate transformations. 
The general formula for the shape functions is given here as 
follows.
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Fig. 1. Different elements with midside nodes 
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Fig. 2. Boundary conditions for obtaining RFs 

The value of the RFs on the entire boundary of the 
square domain is given in Fig. 2. In fact, we seek 
the value of the RFs at the internal points of the square 
domain. In the present work, the Laplace boundary value 
problem is used here to obtain RFs in the internal points. 
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boundary conditions given in Figure Fig. 2. The surface 
plots of the four root functions are shown in Figure Fig. 
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Figure Fig. 3. Four Root root Functionsfunctions 

 4- Harmonic Shape Functions 

The shape functions of element types A to E can be 
obtained using the four RFs with proper coordinate 
transformations. The general formula for the shape 
functions is given here as follows. 

𝑁𝑁(𝝃𝝃) = φ(𝑻𝑻𝑻𝑻) (2) 
were N is the harmonic shape function defined in 

Local Coordinate System (LCS), φ is a root function in 
RCS and T is a transformation matrix which that 
transforms the local coordinates ξ to the root coordinates 
α. For example, the Surface surface plots of the shape 
functions of element type B are are shown in Figure Fig. 
4. 
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were N is the harmonic shape function defined in Local 
Coordinate System (LCS), φ is a root function in RCS and T is 
a transformation matrix that transforms the local coordinates 
ξ to the root coordinates α. For example, the surface plots of 
the shape functions of element type B are shown in Fig. 4.

5- NUMERICAL EXAMPLES
As the first example, the patch test is conducted for the 

Laplace equation over a unit square using different meshes 
which are shown in Fig. 5. The exact solution is considered 
as T=x+3y and the Dirichlet boundary condition is applied 
on all of the boundaries of the square domain. The Laplace 
equation was solved using the proposed method and the 
results showed that the proposed method would pass the 
patch test.

In the second example, a convergence test for the 
Laplace equation is done to evaluate the effect of mesh size 
on the quality of the results. To do this, assume the Laplace 
equation holds in a unit square domain and consider the 
exact solution as u=exsin(y). Dirichlet boundary condition is 
applied to the domain boundaries using this exact solution. 
The problem is solved using four different meshes as shown 
in Fig. 6. The relative L2 error norm of the field variable for 
each mesh is presented in Fig. 7.
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Fig. 2. Boundary conditions for obtaining RFs 

  Fig. 2. Boundary conditions for obtaining RFs
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Fig. 4. The shape functions of element type B 

  

Fig. 3. Four root functions

Fig. 4. The shape functions of element type B

 
Fig. 5. The meshes of the first example 

  
Fig. 5. The meshes of the first example
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6- CONCLUSIONS
The harmonic functions were used in the present work to 

define the elements with midside nodes. The shape functions 
were defined in such a way that vary linearly between adjacent 

 
Fig. 6. The meshes of the second example 

  

 
Fig. 7. Relative error norm in the second example 
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Fig. 6. The meshes of the second example

Fig. 7. Relative error norm in the second example

nodes on the element boundaries and therefore the elements 
could be attached to any standard linear elements. As a result, 
the hanging nodes were treated very naturally in the present 
method without any additional constraints. Two numerical 
examples were solved to evaluate the proposed method and 
the results are presented.
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