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ABSTRACT: In this paper, the effect of blowing in a rod on the flow structure and its noise in a rod-
airfoil is investigated. To this aim, the simulation of the flow around the rod-airfoil was performed using 
URANS equations and employing k-ω-SST turbulence model. The prediction of the flow-induced noise 
is performed using F-WH analogy. Since Vortex’s periodic production is the main cause of the noise 
mechanism, by reducing its effect on the airfoil leading edge, the acoustic propagation reduces as well. 
In the present study, in order to control flow and reduce noise, the blowing active control in the rod has 
been used. The intensity of the blowing that is the ratio of blowing velocity to the inlet freestream flow, 
is chosen between 0.1 and 0.5. The results showed that increasing the blowing intensity to 0.5 reduces 
the noise emitted from the rod by 90% and the airfoil and rod-airfoil by 64%. In addition, by applying 
blowing, the lift force is increased and the drag force of the rod is reduced, which is aerodynamically 
favorable. In addition, the vortex shedding frequency decreases when blowing applied.
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1- Introduction
Interaction of the fluid flow and the object leads to 

aerodynamic noise when a bluff body is exposed to a 
flow. Therefore, it is necessary to study the occurrence of 
aerodynamic noise and identify related phenomena. 

Some devices and turbomachines are designed and 
tuned to be located downstream of a bluff body. Typically, 
a set of heat exchanger tubes, air conditioning systems, 
and helicopter rotors, for example, interact with other 
components such as fittings, bolts, and aircraft cycles, such 
as turbochargers. In order to simulate the phenomena in these 
cases, a combination of rod and airfoil is used to investigate 
the noise and turbulence structure of the flow. In this way, 
by locating the rod upstream of the airfoil, the unsteady flow 
passing of the rod moves downstream and divides at the 
leading edge. Accordingly, the study of flow structure and 
methods of reducing aerodynamic noise in the rod-airfoil 
has been considered by researchers due to its importance. 
In this regard, Jacob et al. [1] measured the flow on a rod-
airfoil and extracted the noise spectra caused by the flow 
around the airfoil. Their experimental results are an accurate 
database for numerical validation. Chen et al. [2] in a three-
dimensional numerical study examined rod-airfoil noise. 
They investigated the effect of corrugating the airfoil leading 
edge on the reduction of aerodynamic noise. Rousoulis et 
al. [3] numerically studied the effect of the rotating rod at 

the upstream of the airfoil on the noise generated in the rod-
airfoil. Their results showed that the noise was reduced if the 
rod rotation frequency was twice the natural frequency of the 
rotation.

Accordingly, the present paper examines the flow-
induced noise in the rod-airfoil using the FW-H analogy. A 
literature review survey shows that the effect of blowing on 
the back of rod surface in rod-airfoil noise control has not 
been investigated. Therefore, in the present paper, the effect 
of blowing on the rod with different velocities to correct the 
flow structure and control aerodynamic noise is investigated.

2- Methodology
To analyze the flow, the governing equations, including 

continuity and momentary equations, must be solved.
To analyze the flow-induced noise, aside from Navier-

Stokes equations, the FW-H (Eq. (1)) is employed as well. 
This is a heterogeneous wave equation derived from the 
continuity equation and Navier-Stokes equations. The stress 
tensor is according to Eq. (2) and Pij is the compressible 
stress tensor (Eq. (3)).
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0c denotes the upstream sound velocity. ( )H f  is the 

Heaviside function, ( )f is the Dirac Delta function 

and Tij is the Lighthill stress tensor. ij , ij ,  and 'P  

account for the viscous stress, Kronecker delta, density, 
and far-field sound pressure ( 0'P P P= − ), 

respectively. 0f =  represents the surrounding surface 
of the external flow problems, ni is the vertical unit 

vector outward region ( 00f  )  is the far-field speed of 

sound. 

FW-H acoustic analogy can be applied to compute 
the far-field sound pressure for flow over the rigid body, 
where the dipole term is dominant over the monopole 
and quadrupole terms. Then, the FW-H equation can be 
simplified as follows: 
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where 0c is the speed of sound in air, is the emission 

time ( / 0t r c = − ), r is the distance between the 

source and the receiver, and y is the source on the 
surface of the rigid bodyS . 

3. Numerical Simulation 

In the present study, the experimental model of 
Jacob et al. [1] is used to validate the results. Thus, an 
airfoil with a chord of 0.1 m is located downstream of a 
rod with a diameter equal to 0.1C and at a distance 
equal to the chord of an airfoil (C). A microphone is 
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Fig. 6 shows the vorticity contours in different 
cases. According to Fig. 6, it can be seen that the flow 
passing the rod causes the vortex shedding and form 
von-Karman Street. It is quite clear that at I = 0 (without 
applying the blowing), the flow is broken into small 
structures after separation and is placed on the airfoil. 
By applying the blowing and increasing its intensity, the 
occurrence of periodic vortices decreases. In I = 0.4 and 
I = 0.5, no vortices have been created at the bottom of 
the rod and von-Karman Street has not been formed. 
Due to the lack of vortices in I = 0.4 and I = 0.5 in the 
flow structure, it is expected a further reduction in 
production noise. A review of Fig. 5 confirms this 
result. 
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Fig. 6. Vorticity distribution by applying the blowing and increasing its intensity around the rod 
and airfoil

4- Results and Discussion 
Variations in the SPL and the Strouhal number in different 

cases are shown in Fig. 5. Fig. 5(a) shows that increasing the 
intensity of the blowing from 0 to 0.5 reduces the maximum 
noise generated by the rod by 90% and the noise generated 
from the airfoil and the rod-airfoil by 64%. Also, according 
to Fig. 5(b), it is observed a decrease of 10% in the Strouhal 
number.

Fig. 6 shows the vorticity contours in different cases. 
According to Fig. 6, it can be seen that the flow passing the 
rod causes the vortex shedding and form von-Karman Street. 
It is quite clear that at I = 0 (without applying the blowing), 
the flow is broken into small structures after separation and is 
placed on the airfoil. By applying the blowing and increasing 
its intensity, the occurrence of periodic vortices decreases. 
In I = 0.4 and I = 0.5, no vortices have been created at the 
bottom of the rod and von-Karman Street has not been 
formed. Due to the lack of vortices in I = 0.4 and I = 0.5 in the 
flow structure, it is expected a further reduction in production 
noise. A review of Fig. 5 confirms this result.

5- Conclusions
In the present paper, a numerical study of the effect of the 

blowing control method in the rod on aerodynamic noise and 
flow structure in a rod-airfoil was discussed. For this purpose, 
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a slot located back of the rod surface was employed. Flow 
blowing was performed at different intensities from 10% to 
50% of the inlet velocity. The acoustic mechanism is often 
periodic that directly relates to the vortex shedding at the rod 
downstream. The increase in the blowing intensity resulted in 
the alleviation of the vortex formation.  The instability of von-
Karman Street around the airfoil leading edge is symmetrical 
that has been minimized by applying the control method. This 
reduces the oscillating forces and then the aerodynamic noise
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5. Conclusions 

In the present paper, a numerical study of the effect 
of the blowing control method in the rod on 
aerodynamic noise and flow structure in a rod-airfoil 
was discussed. For this purpose, a slot located back of 
the rod surface was employed. Flow blowing was 
performed at different intensities from 10% to 50% of 
the inlet velocity. The acoustic mechanism is often 
periodic that directly relates to the vortex shedding at 
the rod downstream. The increase in the blowing 
intensity resulted in the alleviation of the vortex 
formation.  The instability of von-Karman Street around 
the airfoil leading edge is symmetrical that has been 
minimized by applying the control method. This 
reduces the oscillating forces and then the aerodynamic 
noise. 
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