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Double hyperbolic sliding mode control based on unscented Kalman filter for three-
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ABSTRACT:  In this paper, mathematical and 3D modeling of a three-legged robotic arm capable 
of moving objects in rough terrain is first presented. Then, considering the noise and environmental 
disturbances, a suitable control method is proposed. Controlling this robot because of its nonlinear 
dynamics and the presence of disturbances and environmental effects is a very important and complex 
issue. Therefore, the controller should be able to set the robot in the right position as quickly as possible 
and eliminate the effect of environmental disturbances and noise on the system response. Accordingly, 
in this paper, a double hyperbolic sliding mode control based on an unscented Kalman filter is developed 
for a three-legged mobile manipulator and system stability is proved by Lyapunov theory. In the 
proposed controller design, while considering the disturbance term in the dynamic model of the system, 
an unscented Kalman filter is used to reduce the noise effect, which improves the robustness of the 
system under severe conditions. Finally, the performance of the proposed controller is compared with 
the inverse dynamic controller and the integral sliding mode control on the robotic system. The results 
show faster operation speed and accuracy in the system response.
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1- Introduction
Many creatures use their feet for movement, which has 

inspired researchers to design legged robots in recent years. 
These robots have many advantages over other types of 
moving robots, including discontinuous surface contact [1], 
high maneuverability, ability to move in rough terrain, ability 
to cross obstacles, and climb stairs. Maintaining the balance 
and stability of the robot in motion is one of the major 
challenges in designing legged robots. Since legged robots 
(except for biped robots) have at least two points of contact 
when moving, their stability and balance are guaranteed. On 
the other hand, as the number of legs increases, the number 
of actuators and joints increases. This increases the cost 
and complexity of robot control. Accordingly, the three-
legged robot structure is proposed as a compromise between 
balance and complexity. This structure is well-balanced 
due to having two ground contact points when moving. On 
the other hand, the analysis of the robot is less complex 
because the number of legs of the robot is less than other 
robots [2]. Other important issues in controlling these robots 
are balanced movement in the presence of uncertainties and 
disturbances, which have been proposed several solutions to 
answer. In the study of Lum et al.  [3], feedback linearization 
control is used for the stable movement of the biped robot. 
Tzafestas [4] used robust sliding mode control for a five-
link robot in the presence of uncertainties. Jeong et al.[5] 

introduce a robust controller for moving a legged robot by 
optimizing step position and step time. In the study of Raibert 
and Sutherland [6], three methods, including PD control, 
sliding mode control, and feedback linearization control on 
the biped robot, are studied, the results of which confirm that 
the sliding mode control method is better. One disadvantage 
of sliding mode control is the presence of chattering on the 
control signal, which damages the actuators. Other sliding 
mode control methods have been proposed for eliminating 
chattering and faster convergence towards the sliding surface, 
most recent examples of which include exponential functions 
[7] or double hyperbolic functions [8]. Greater convergence 
speed and better chattering elimination are the advantages of 
double hyperbolic compared to other methods. Another issue 
in the design of control systems is the inaccessibility of the 
states or the noise over the measured values, an unscented 
Kalman filter can be used to solve it. This estimator directly 
uses nonlinear dynamics, so it is not required to calculate the 
Jacobian such as the extended Kalman filter [9, 10]. 

In this paper, we propose a method of double hyperbolic 
sliding mode control based on an unscented Kalman filter for 
controlling a three-legged mobile manipulator in the presence 
of disturbances and noises. In this regard, in Section 2, the 
robot model and unscented Kalman filter are introduced, then 
the control method is proposed. The results of the simulation 
in Section 3 and the conclusions in Section 4 are presented. 
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2- Methodology
2.1. Robot model

The three-legged robot model presented in this paper is 
illustrated in Fig. 1. In this robot, each leg has 3 DOF, which 
is attached to the base of the robot with 6 DOF, and a 3 DOF 
arm is placed on the base of the robot.  The robot is also point 
feet because of its simplicity and less computation. In Fig. 1, 
[ , , ]b b bx y z are the Cartesian coordinates of the base in the 
reference frame and [ , , ]b b bθ ϕ ψ are the spatial orientations 
of the base in the reference frame. Based on the kinematic 
model of the robot and the numbering of each leg according 
to Table 1:

The generalized coordinates of the robot include the body, 
legs, and the arm variables as follows:
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where bq  is the base coordinate, i
Lq  the generalized 

coordinates of the leg with the number “i”, and ARMq  are 
the generalized coordinates of the arm. The generalized 
coordinates of the robot are obtained as follows:

Using the extended Lagrangian method, the closed-form 
of the three-legged robot model is finally obtained as follows 
[11, 12]:

( ) ( ) ( ),M q q C q q q G q dτ+ + = +   � (1)

where M is the inertia matrix, C is the Coriolis matrix, 
G is the gravity matrix, τ is the torque vector and d is the 
disturbance vector in the system.

In this paper, controller design is performed in the support 
phase. In the support phase, all three legs are on the ground. 
On the other hand, the balance of the robot is checked using 
the center of gravity image method. According to this method, 
the system is balanced if the horizontal image of the center of 
gravity is inside a support polygon.
2.2. Unscented Kalman filter

The unscented Kalman filter method is fully listed in 
references [9, 10].

2.3. Double hyperbolic sliding mode control
In the double hyperbolic sliding mode control the reaching 

law is given by [8]:
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where s is the sliding surface, 1k , 2k , a and b are the 
positive parameters and q are the positive and the odd power, 
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4. Conclusions 

In this paper, after obtaining a three-legged mobile 
manipulator model, a double hyperbolic sliding mode 
controller based on an unscented Kalman filter was 
proposed to estimate the nonlinear states of the robot and 
control it in the presence of external disturbances. The 
stability of the closed-loop system for the proposed 
controller was also proved by using Lyapunov theory. 
Based on the results of the simulation and compared to 
sliding mode control and inverse dynamic control, the 
proposed method is more robust than the other two 
methods in addition to the convergence speed under the 
same conditions. Future work is to extend the proposed 
control method using neural networks and force control. 
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