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ABSTRACT: In this study, two new multi-generation (hydrogen, power, heating) systems are 
thermodynamically analyzed and optimized. For the proposed cycles, the two systems are distinguished 
by the power generation cycle, so that the organic Rankine cycle and the Kalina cycle are used to 
produce power. Both systems also use domestic water heater for heating and proton exchange membrane 
electrolyzer for hydrogen production. After the thermodynamic simulation, a comprehensive study was 
performed for evaluating the parameters affecting hydrogen production, net output power, heating, 
thermal efficiency and exergy efficiency of two cogeneration systems and finally, an optimization was 
performed from an exergy efficiency point of view. According to the results of this study, for the organic 
Rankine cycle-based tri-generation system, when evaporator temperature increases exergy efficiency 
and hydrogen production show optimum values while for Kalina cycle-based tri-generation system, 
hydrogen production and exergy efficiency increase. Also, according to the study of various operating 
fluids for the organic Rankine cycle, the R152a as an organic Rankine cycle fluid produces more 
hydrogen. Furthermore, based on the optimized results for 120 °C heat source temperature, the Kalina 
cycle-based tri-generation system has more exergy efficiency and more hydrogen production than the 
organic Rankine cycle-based tri-generation system.
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1. Introduction
Nowadays, limited fossil fuel sources and growing 

demand for world energy have led to the consumption of 
renewable energies [1,2]. Geothermal energy is a type of 
renewable energy that has received much attention due to its 
sustainability, reliability, and unlimited sources [3]. These 
days, the cogeneration system is of great importance and 
is expanding worldwide due to its technical, economic and 
environmental benefits using geothermal energy sources [4]. 
The tri-generation (heating, hydrogen and power) systems 
of geothermal energy are important due to the flexibility 
in hydrogen production, power and heating. However, not 
many research works have been conducted in the field of 
employment of the tri-generation systems, and especially for 
use of low and medium heat sources, and also not enough 
attention has been paid to Kalina cycle as the source of 
power generation in simultaneous production systems and its 
performance compared to other well-known cycles such as 
the organic Rankin cycle. 

Some principal purposes of the present study are as 
follows:

• Using geothermal energy as the heat source for tri-
generation system to produce hydrogen, heating and power

• Modeling of the two tri-generation systems from the 
thermodynamic point of view.

• Parametric study and optimization of the systems. 

2. System Description
Schematics of the two tri-generation systems for power, 

heating, hydrogen production from geothermal heat source 
are shown in Figs. 1 and 2 in which Organic Rankine Cycle 
(ORC), and Kalina Cycle (KC) are used to produce power 
respectively. Also, for the two tri-generation systems, 
Domestic Water Heater (DWH) is used for heating and Proton 
Exchange Membrane (PEM) is used for hydrogen production. 

3. Results and Discussion
In the ORC-based tri-generation system, when isobutane 

is used as the ORC fluid and at optimum thermodynamic 
condition ( o

geo 120 C,T = , 
o

evap =89.06 C,T , PP,eva
o

pÄ =10 C,T
, 0.1a =  and o

PEM =80 CT  ), the net output power, heating, 
hydrogen production, and thermal and exergy efficiencies 
are 1165 kW, 13226, 1.901 kg/hr, 36.23% and 36.87%, 
respectively. Also, in the KC-based tri-generation system 
and optimum thermodynamic condition ( o

geo =120 C,T

, 
o

evap =110 C,T , PP,eva
o

pÄ =10 C,T , 0.1a = , 9 =39.25barP   
and o

PEM =80 CT  ), the net output power, heating, hydrogen 
production thermal and exergy efficiencies are calculated 
as 1197 kW, 12855, 1.951 kg/hr, 35.39% and 37.32%, 
respectively.

On the other hand, in the ORC-based tri-generation 
system when n-pentane, R245fa and R152a are used as ORC 
fluid, hydrogen production is obtained 1.743 kg/hr, 1.831 kg/
hr and 1.973 kg/hr, respectively.
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The effects of the evaporator temperature on the 
hydrogen production, net output power, thermal efficiency, 
exergy efficiency and heating for the ORC-based system are 
displayed in Fig. 3. When  increases, the inlet enthalpy of 
ORCT increases, while ORC mass flow rate decreases, these 
opposite trends lead to power production and consequently 
hydrogen production reaches the optimum value. Also when  
increases, heating and thermal efficiency are increased.

Variations of the performance of the ORC-based system 

with   are illustrated in Fig. 4. In regard to  increasing, the 
net output power increases and consequently hydrogen 
production and exergy efficiency increase as well as heating 
and thermal efficiency decrease.

The exergy destruction of components in the ORC-based 
and Kalina tri-generation systems are shown in Figs. 5 and 6, 
respectively. Results show that the highest exergy destruction 
for the two tri-generation systems belongs to D.W.H, 
condenser and evaporator, respectively.

Fig. 2. The new KC-based tri-generation systemFig. 1. The new ORC-based tri-generation system
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4. Conclusions
The main results can be listed as follows:
• The net output power, heating, hydrogen production 

thermal and exergy efficiencies are 1165 kW, 13226, 1.901 
kg/hr, 36.23% and 36.87%, respectively.

• The R152a as an ORC working fluid produces more 
hydrogen compared to other selected fluids.

• The hydrogen production and exergy efficiency have 
optimum values with regard to evaporator temperature in the 
ORC-based system while hydrogen production and exergy 
efficiency increase in the KC-based system. 

• The highest exergy destruction of the two tri-generation 
systems belongs to D.W.H, condenser and evaporator.
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Fig. 6. The exergy destruction of components in the Kalina-based tri-generation system 

1.  Fig. 6. The exergy destruction of components in the Kalina-
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