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Using nonlinear energy sink to improve the dynamic behavior of rectangular plate 
under supersonic aerodynamic flow at different angles 
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ABSTRACT: In this paper, the effect of nonlinear energy sink on the dynamic behavior of a rectangular 
simply supported elastic plate at different azimuth angles is investigated. The plate under study is a thin 
rectangular plate to which a non-linear energy sink is connected and the supersonic flow of air passes 
over it. The research aims to improve the behavior of the plate by changing the spatial parameters of the 
nonlinear energy sink. Classical plate theory is used to obtain plate equations, and von Karman strain-
displacement relations are used to consider the nonlinear geometric effect. Modeling of supersonic 
aerodynamic flow will be based on first-order piston theory. The Kelvin-Voigt model is also used for 
non-linear energy sinks. The equations were extracted from Lagrange’s method and then discretized 
by Rayleigh-Ritz method and solved by fourth-order Runge-Kutta method. In order to investigate the 
effects of nonlinear energy sink, the time history curves, phase portraits, Poincaré maps and bifurcation 
diagrams are used. The results show that using nonlinear energy sinks, the behavior of the plates, which 
in some cases is very complex, can be changed to a simpler behavior. In some cases, using a non-linear 
energy sink near the center of the plate is not appropriate.
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1. Introduction
Many engineering structures, including in the aerospace 

industry, can be considered and modeled as plates. Because 
plates in the aerospace industry are subject to aerodynamic 
forces, they may exhibit complex nonlinear dynamic 
behaviors, which can also depend on different azimuth angles. 

Dowell investigated the behavior of flutter in plates due 
to airflow [1, 2]. Grover et al. [3] investigated the ultrasonic 
flutter of a composite plate. They concluded that flow 
stiffness and geometric parameters should be considered as 
the main factors in designing flutter velocities in mechanical 
structures. 

Hosseini et al. [4] have used numerical solution to analyze 
the flutter of a functionally graded continuous plate under 
supersonic flow with different azimuth angles. The results 
show that the critical value of the azimuth angle depends on 
the aspect ratio of the plate and geometric parameters such 
as thickness. Taleshi et al. [5] have investigated the effect 
of nonlinear energy sinks to control plate vibrations. They 
considered a thin simply supported plate under harmonic 
excitation. The results show that nonlinear energy sinks 
designed for some excitation values show better behavior 
than adjusted TMD, but with increasing excitation force, 
nonlinear energy sinks have less effect than TMD. Chen et 
al. [6] have studied composite plate and optimal design of 
nonlinear energy sinks. 

In the present study, the effect of nonlinear energy sink 
on the dynamic behavior of simply supported rectangular 
plate under the effect of supersonic airflow at different 
azimuth angles, with the occurrence of different types of 
movements such as periodic and chaotic movements, and its 
improvement to simpler behaviors has been considered. The 
aim of this research is to try to improve the behavior of the 
plate by changing the location of the nonlinear energy sink. 
Classical plate theory was used to obtain the plate equations 
and von Karman strain-displacement relations were used to 
consider the geometric nonlinear effect. Aerodynamic flow 
modeling for supersonic flow was based on the quasi-static 
first-order piston theory. The Kelvin-Voigt model is also used 
for nonlinear energy sink. The equations are extracted by 
the Lagrange method and then discretized by the Rayleigh-
Ritz method and solved by the fourth-order Runge-Kutta 
method. In order to investigate the effects of nonlinear energy 
sink, time response and fuzzy diagrams, Poincaré maps and 
bifurcation diagrams were used.

2. Methodology
The square simply supported panel with a nonlinear 

energy sink connected to it, shown in Fig. 1. 
The air flow is supposed to cross over upper surface of the 

plate in different angles. The plate is taken as a homogeneous 
isotropic.
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By using the quasi-steady first-order piston theory, the 
aerodynamic pressure at supersonic velocity can be derived 
as follows:
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Fig. 1. Schematic view of the simply supported plate equipped with nonlinear energy sink under aerodynamic flow 
with azimuth angle. 
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The Kelvin-Voigt model is used for NES.  m , C , 
1K   and  3K  denote the mass, damping coefficient, linear 

stiffness, and cubic nonlinear stiffness, respectively.
Therefore, kinetic and potential energies can be written 

as follows:
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The Lagrange method is used to drive equations of 
motion. The equations are then discretized by the Rayleigh-
Ritz method consists of assuming the form of the solution 
in terms of admissible functions and generalized coordinates. 
The required admissible functions satisfy the geometric 
boundary conditions of the plate. Then the dimensionless 
equation of motion for plate in according to classical plate 
theory is given Lagrange equations:
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Fig. 2. Dimensionless limit cycle oscillation amplitude of simply supported square plate with and without NES, in dimensionless 
aerodynamic load a) λ = 900,Λ = 0  

First choosing the best location is an important issue. In Fig. 2 dimensionless transverse limit cycle oscillation 
amplitude in dimensionless aerodynamic load λ = 900  for different NES locations are plotted. It is observed that 
placing NES near the middle of the plate has a greater effect on reducing the oscillation of the limit cycle oscillation 
than a plate without NES. 
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for different NES locations are plotted. It is observed that 
placing NES near the middle of the plate has a greater effect 
on reducing the oscillation of the limit cycle oscillation than 
a plate without NES.

In Fig. 3 by considering NES location in [0.6,0.4] the 
bifurcation diagram is plotted. As it is shown using NES in 
plate can postpone the flutter and it may change complex 
behaviors to simple motions, so in this paper, different 
aspect ratios and different flow directions are considered. 
Also by using time history, phase portrait, Poincare section 
and power spectra we investigate some changes in plate’s 
behavior.
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In Fig. 3 by considering NES location in [0.6,0.4] the bifurcation diagram is plotted. As it is shown using NES in 
plate can postpone the flutter and it may change complex behaviors to simple motions, so in this paper, different aspect 
ratios and different flow directions are considered. Also by using time history, phase portrait, Poincare section and 
power spectra we investigate some changes in plate's behavior. 

4. Conclusions 

The effect of nonlinear energy sink on the dynamic behavior of a rectangular simply supported elastic plate under 
the effect of supersonic airflow at different azimuth angles is investigated.  Results show that by selecting NES in 
locations around the middle of the plate, there is a significant change in its behavior for the aspect ratios 1 and 2, but 
these changes are insignificant for the aspect ratio 4. Changing the azimuth angle has a great effect on the dynamic 
behavior of the plate so that the periodic motion range decreases with increasing azimuth angle. The NES has the ability 
to absorb vibrational energy due to its damping and ability to act as a dynamic absorber, and it has been observed that if 
installed in the right place, it can transform complex nonlinear behaviors such as chaotic motion into simpler behaviors 
such as periodic motion. 
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energy due to its damping and ability to act as a dynamic 
absorber, and it has been observed that if installed in the right 
place, it can transform complex nonlinear behaviors such 
as chaotic motion into simpler behaviors such as periodic 
motion.
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behavior of a rectangular simply supported elastic plate under 
the effect of supersonic airflow at different azimuth angles is 
investigated.  Results show that by selecting NES in locations 
around the middle of the plate, there is a significant change 
in its behavior for the aspect ratios 1 and 2, but these changes 
are insignificant for the aspect ratio 4. Changing the azimuth 
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