Analysis of the Wear of Railway Turnouts in a Combined Method and Hardening Model

Majid Shahravia, Ahmadreza Shahmolla Ghamsarib, Ahmadreza Akbaric

aM_Shahravi@iust.ac.ir, Iran University of Science And Technology
bA_Shahmolla@rail.iust.ac.ir, Iran University of Science And Technology
cAhmadreza_Akbari@rail.iust.ac.ir, Iran University of Science And Technology

ABSTRACT

Nowadays, the increase in axial load and speed in railway transportation systems has increased the amount of pressure applied to the surface and energy loss, and has caused severe wear of turnout profiles, especially in turnout intersections. One of the major financial and physical losses to the country's railway is the train derailment in the turnout intersections.

As mentioned above, due to the importance of turnout in this study, it has been tried to study the role of damages caused by turnout wear of railway system and explain the necessity for such research in this regard, particularly in Iran, by studying this phenomenon and examining the ruling theories as well as collecting information. In fact, these studies are the starting point for a more precise investigation into this phenomenon.

In the following, the movement of train on a turnout is simulated in the "Universal Mechanism" software and the amount of force applied to the turnout and the wear energy is extracted. Furthermore, the effect of different parameters such as speed, axial load, friction coefficient, arc radius, and turnout profile on the rate of wear will be investigated. Then the turnouts are modeled on CATIA software and the forces extracted from the Universal Mechanism simulation are exerted to the turnout in the FEM software, and the stress, strain and deformation of the turnouts are investigated.

KEYWORDS

Turnout, Wear, Plastic Deformation, Finite Element

1. Introduction

The turnouts are most important parts in railway tracks, which involved in more than 50 percent of problems and delays in railway systems [1]. Therefore, this subject is interested in by many scientist in this decade. Petz has examined the crack of Rolling Contact Fatigue (RCF) in turnout, particularly in crossing nose, by applying FEM analysis, considering three different material and simplified model [2]. Blanco-Saura has investigated the vertical dynamic response by two different model (FEM and multibody dynamic), particularly in the frog and switch blade [3]. Yuewei Ma has studied the wear in switch by defining a Modelling strategy and considering an experimental validation of impact which is happened in crossing nose [4]. Jingmang has introduced a numerical method in order to examine the wear of switch by considering the variation in input data. This method is on the basis of multibody dynamic model of switch [5]. Xin has studied some dynamic response, for example acceleration, contact force, and displacement of crossing nose by using a model [6]. Xin has studied the welding and grinding effect which are the main part of maintenance process of switch that operate on the crossing nose. He studied by a model which has built by combining of main cross sections geometry [7]. Xin has studied the fatigue life of Turnouts by considering a wheelset on crossing nose and using FEM model [8]. Nielsen has examined the wear and Rolling Contact Fatigue (RCF) in a turnout on the basis of the Archard model and theory of shakedown in simulation of the turnout and wheel interaction [9].

In this article, multibody dynamic model and FEM model has been provided and the new combination of this models has been used in order to investigate the wear and deformation in turnouts. Moreover, Kinematic and isotropic hardening has been considered which are
caused by impact in crossing nose. The longitude creepage, lateral force, frictional energy based on Archard model, and vertical load in railway turnout and wheel have been obtained by using multibody dynamic model and considering the variation in velocity, load of wagon and profile of turnout. This results has been used in FEM model to investigate the deformation on crossing nose.

Modeling

A freight wagon has been modeled in Univesal Mechanism, which is multibody dynamic software. The model has been shown in Figure 1.

![Figure 1. Model of freight wagon using 18-100 bogie](image)

Figure 1. Model of freight wagon using 18-100 bogie

The model has been validated by the [19] which has investigated the derailment factor. The result can be seen in figure 2.

![Figure 2. Comparison of derailment factor in 200 meters curve](image)

Figure 2. Comparison of derailment factor in 200 meters curve

As it can be seen in figure 3, The FEM model has been provided in ABAQUS software by considering the kinematic and isotropic hardening for material of turnout. The result has been compared by [7], that the error is less than 15 percent for different distance from the tip of the crossing nose. The result can be seen in figure 4.

![Figure 3. FEM model](image)

Figure 3. FEM model

![Figure 4. Comparison of stress in turnout at different distance from tip of the crossing nose](image)

Figure 4. Comparison of stress in turnout at different distance from tip of the crossing nose

Result

The result comparing different parameters such as creepage, vertical and lateral force and frictional energy for a variation of velocity, profile and radius of curvature in multibody dynamic. The result has been shown in figure 5.

![Figure 5. Creepage in rail/wheel interaction as the velocity have change](image)

Figure 5. Creepage in rail/wheel interaction as the velocity have change
Figure 6. Frictional power for different profile (UIC60 and U33)

The result of vertical load and most critical spot has been obtained by the multibody dynamic analysis and applied to FEM analysis the result can be seen in figure 7.

Figure 7. Result of different plastic deformation by considering the kinematic and isotropic deformation.

Conclusion

The results show that incising the axle load by 66 percent, frictional energy has been increased by 80 percent at curve and 86 percent at the crossing nose.

The plastic deformation in U33 is larger than UIC60 by 94% which is caused by the differences in their geometry.

2. References