Effect of adding carbon nanotubes into the matrix material on the buckling behavior of glass/epoxy composite plates: An experimental study

H.R. Sabermanesh¹, M. Ghannad²*, S.M. Hosseini Farrash³

¹Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.
²Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.
³Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.

ABSTRACT

In this research, buckling of polymer matrix composite plates containing unidirectional glass fibers under in-plane pressure load is investigated. Moreover, the effect of adding carbon nanotubes (CNTs) as reinforcement into the matrix material on the critical buckling load of composite plates is studied. Using hand lay-up method, rectangular glass/epoxy composite plates with and without CNTs were fabricated. 0.25, 0.5 and 1.0 weight percent of CNTs were added in to the epoxy resin and composite plates were subjected to the longitudinal in-plane pressure load. The plates were tested under fix ended boundary conditions utilizing Instron hydraulic universal testing machine. Based on the results, adding 0.5 weight percent of CNTs has the most influence on the critical buckling load of the plates. Results show that adding 0.5 weight percent of CNTs into the matrix material increases the critical buckling load of the CNT/glass/epoxy plate more than two times with respect to that of glass/epoxy composite plate. Furthermore, when the CNTs weight percent reaches to 1 %, because of CNTs agglomeration, CNTs are not dispersed well in to the epoxy resin and the critical buckling load of the composite plate decreases. To validate the results, buckling analysis of glass/epoxy composite plate was done in Abaqus finite element software. Finite element models confirm the experimental results obtained.

KEYWORDS

Composite plate, carbon nanotube, glass/epoxy fibers, buckling analysis, experimental study.

* Corresponding Author: Email: mghannadk@shahroodut.ac.ir
1. Introduction

Sheets are one of the most important and widely used structures in various industries. These structures are utilized in industries such as aerospace, automotive, military and marine. One of the most important issues regarding sheets is the weight of these structures, which should be reduced as much as possible. To this end, the use of composites to replace metals is rapidly expanding. Polymer-based composites, including glass or carbon fibers, are extensively used in industry. These composites are employed in the construction of various types of flying robots, naval vessels, electric vehicles, oil and gas transmission pipes, artificial members and other similar applications. Another important issue in the design of composite structures is the stability of these structures against the loads. The buckling phenomenon causes instability of composites and much effort has been made to increase the critical buckling load of these light structures.

Since the discovery of carbon nanotubes (CNTs) by Iijima [1], mechanical, electrical and thermal properties of CNT reinforced composites have been investigated in several research studies. In hybrid or multi-scale composites, the matrix material is reinforced with both nano-fillers and micro fibers [2]. Medhhi and Subbarao [3] investigated the reinforcing effect of carbon nanotubes on polymer composite sheets under static loading. Azadi and Rostamiyan [4] employed Taguchi method and studied the influence of three independent variables (carbon fiber orientation, nano clay and CNT weight percent) on the buckling force of hybrid laminated nanocomposites. Zamani et al. [5] demonstrated the influence of nano-clay on buckling behavior of glass fiber reinforced polymer grid-stiffened nanocomposite shells. Eslami-Farsani et al. [6] utilized experimental method and investigated the effect of the multi-walled CNTs (MWCNTs) addition at various weight percentages with respect to the matrix on the flexural behavior of grid composite structures. Bozkurt et al. [7] produced S-glass fiber reinforced composite laminates with epoxy resin and different weight contents of nano-clay particles. They analyzed critical buckling loads characteristic along with axial and lateral direction.

To the best knowledge of the authors, little research has been focused on the buckling behavior of hybrid composites. Moreover, using scanning electron microscopy (SEM) images, the effect of CNT-reinforced matrix on the critical buckling force of hybrid composites is discussed in this work. Glass/epoxy and CNT/glass/epoxy with different weight percentages of CNTs are fabricated. Epoxy resin containing 0.25, 0.5 and 1.0 weight percent (wt. %) of CNTs is used to manufacture CNT included specimens. Employing uniaxial buckling test, the critical buckling load for different types of plates are experimentally obtained.

2. Methodology

Unidirectional glass/epoxy and CNT/glass/epoxy hybrid composite plates are manufactured. The combination of mechanical steering and sonication method are used to disperse CNTs into the epoxy resin. The hand layup method is utilized to manufacture three ply unidirectional composite plates. Plates with different materials are shown in Figure 1.

![Figure 1. Glass/epoxy composite plate sample (left) and CNT/glass/epoxy composite plate (right)](image1)

A hydraulic universal testing machine (INSTRON STM-150) is used to perform the tensile and buckling tests (Figure 2).

![Figure 2. Buckling of composite plate under pressure loading](image2)

3. Discussion and Results

To investigate the effect of adding CNTs into the matrix material of glass/epoxy plate, the experimental buckling test were utilized. Three samples of each material were subjected to in-plane unidirectional pressure load. Pressure force-displacement diagrams for glass/epoxy, 0.25%CNT/glass/epoxy, 0.5%CNT/glass/epoxy and 1%CNT/glass/epoxy laminated plates are demonstrated in Figure 3.
Figure 3. Effect of adding CNTs with different weight percentages on the force-displacement graph of composite plates

The critical buckling loads (P_{cr}) are extracted from these graphs and summarized in Table 1.

Table 1. Critical buckling loads for composite plates

<table>
<thead>
<tr>
<th>Plate material</th>
<th>P_{cr} (N)</th>
<th>Improvement (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass/epoxy</td>
<td>191.14</td>
<td>0.00</td>
</tr>
<tr>
<td>0.25%CNT/glass/epoxy</td>
<td>321.16</td>
<td>68.02</td>
</tr>
<tr>
<td>0.5%CNT/glass/epoxy</td>
<td>513.42</td>
<td>168.61</td>
</tr>
<tr>
<td>1%CNT/glass/epoxy</td>
<td>424.87</td>
<td>122.28</td>
</tr>
</tbody>
</table>

As the Table 1 shows, the average critical buckling load for glass/epoxy plate is 191.14 N. Based on the table, adding 0.5 wt. % of CNTs into the matrix material results in a noticeable improvement in the amount of critical buckling load. This number is 513.42 N for 0.5%CNT/glass/epoxy specimen which indicates 168% increase with respect to that of glass/epoxy specimen. Moreover, the SEM images are taken from the fracture surface of the specimens. Figure 4 illustrates the proper dispersion of CNTs into the epoxy resin for 0.5%CNT/glass/epoxy specimen.

Figure 4. Homogeneous dispersion of CNTs into the matrix material for 0.5%CNT/glass/epoxy composite plate

Figure 5 represents that adding 1 wt. % of CNTs into the epoxy resin cause to the agglomeration of CNTs in some regions of the matrix.

Figure 5. Nonhomogeneous Dispersion of CNTs into the matrix material for 1%CNT/glass/epoxy composite plate and existence of CNTs agglomerations

4. Conclusions

In this study, the critical buckling load of glass/epoxy and CNT/glass/epoxy plate-shaped specimens are obtained experimentally. Based on the results, a remarkable increase in the amount of critical buckling load is observed when 0.5 wt. % of CNTs is added into the epoxy resin.

5. References