Numerical analysis of Secondary flow strength induced by Electrohydrodynamic actuator through a smooth channel

Hesam Moayedia, Nima Amanifardb*, Hamed Mohaddes Deylamic

a Thermo-Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Iran
b Thermo-Fluids Department, Faculty of Mechanical Engineering, University of Guilan, Iran
c Faculty of Technology and Engineering, East of Guilan, University of Guilan, Iran

ABSTRACT

In this paper, the effect of the secondary flow induced by the electrohydrodynamic actuator is numerically investigated in the vorticity flux, as a criterion for the secondary flow strength, and the electrohydrodynamic vortices through a smooth channel. In this study, the influence of effectiveness parameters of the electrohydrodynamic as the Reynolds number, applied voltage and the arrangement of the emitting electrode on the vorticity flux, and also relationship between flow and heat transfer characteristics with the vorticity flux are evaluated. The results indicated that in presence of electric field, by increasing the Reynolds number, dimension of the upstream electrohydrodynamic-induced vortices and the vorticity flux are decreased. Also, it is obvious that by increasing the applied voltage, the dimension of the electrohydrodynamic-induced vortices and the vorticity flux are increased. According to numerical results, the heat transfer enhancement is completely depending on the vorticity flux. Also, by changing of the emitter arrangements, the non-dimension average vorticity flux and the average heat transfer enhancement are changed. It is shown that with decrease of the distance between emitter electrode and inlet of channel, the non-dimension average vorticity flux and the average heat transfer enhancement are increased 27.9\% and 17.9\%, respectively.

KEYWORDS

Numerical analysis, Vorticity flux, Electrohydrodynamics, Heat transfer.

* Corresponding Author: Email: namanif@guilan.ac.ir
1. Introduction

Vortex-generating technique as a powerful tool has always been subjected to deep scrutiny by researchers. Along with the improvements of vortex-generation techniques, the electrohydrodynamic induced vortex method has been deeply concerned during the last decade, because of their easy implementation. In this method, a high voltage is applied to the discharge electrode to induce a secondary air flow which is known as corona wind [1]. Deylami et al. [2] numerically investigated the influence of using various arrangements of the emitter on the heat transfer augmentation through a smooth channel. Moreover, Wang et al. [3] proposed an effective electrode pair arrangement in a rectangular double-wall-heated channel, where one electrode impinged on the top wall, and the other impinged on the bottom wall. On the other hand, in some studies, the analogy between the heat transfer and the vorticity flux have been investigated [4, 5]. Chang et al. [4] and Song and Wang [5] suggested the spanwise averaged vorticity flux to analysis the strength of the generated secondary. They showed that a similar trend is occurred between the longitudinal variation of the spanwise averaged vorticity flux and the spanwise averaged Nusselt number.

In order to quantify the strength of the secondary flow, Chang et al. [5] referred to the averaged absolute vorticity flux \(J \) as follows:

\[
J = \frac{\int S |\nabla \times \mathbf{u}| \, dz \, dy}{\int S \, dz \, dy}
\]

Also, a dimensionless value of the averaged absolute vorticity flux can be given by the following relation:

\[
\sigma = \frac{JS}{UH}
\]

The governing equations for the electric field as following:

\[
\nabla \Phi = \frac{\rho}{\varepsilon_r}
\]

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (-\rho \mathbf{f} \nabla \Phi) = 0
\]

4. Results and Discussion

Evaluation of the averaged absolute streamwise vorticity flux for EHD-induced flow, as a main factor of the EHD phenomenon, is computed, and is used for the discussion on the relationship between the vorticity flux with the heat transfer and the flow structure. The case studies are conducted for a 2D smooth channel with variation of substantial parameters; Reynolds number, applied voltages, size of collector plate and the arrangements of emitter, affecting the vorticity flux.

2. Geometry

Fig. 1 represents a schematic view of the computational domain used for the present study.

![Schematic view of the computational domain.](image)

3. Governing Equations

The governing equations of the flow, thermal, and species fields including continuity, momentum energy equations are as follows.

\[
\nabla \cdot \mathbf{u} = 0
\]

\[
\rho (u \cdot \nabla) u = -\nabla P + \left(\mu + \mu_t \right) \nabla^2 u + F_i
\]

\[
u \cdot \nabla T = \nabla \cdot \left(\alpha (\nabla T) \right)
\]

\[
\mu_t = \rho C \frac{k^2}{E}
\]
Moreover, the longitudinal evolution of the dimensionless absolute vorticity flux for different applied voltage is shown in Fig. 10.

![Figure 3. Longitudinal evaluation of dimensionless vorticity flux based on different applied voltage (Re=3000, d=30 cm).](image)

According to Fig. 4, it can be argued that the behavior of \(\sigma_{EHD}/\sigma_{non-EHD} \) and \(h_{EHD}/h_{non-EHD} \) are nearly same for the EHD phenomenon. In addition, the maxima of both profiles of the \(\sigma_{EHD}/\sigma_{non-EHD} \) and \(h_{EHD}/h_{non-EHD} \) take place in the vicinity of emitter position (\(x \approx 0.3 \text{m} \)).

![Figure 4. Longitudinal evaluation of dimensionless vorticity flux and normalized heat transfer coefficient (Re=1000, \(V_0=18 \text{ kV}, d=30 \text{ cm} \)).](image)

To investigate the effect of longitudinal position of the emitter on the secondary flow strength, three longitudinal positions are set to be considered and results of these cases are presented in Table 1. It is clear that the \(\sigma_{EHD}/\sigma_{non-EHD} \) and \(h_{EHD}/h_{non-EHD} \) are significantly sensitive to the emitter arrangements.

Table 1. Averaged dimensionless vorticity flux and averaged normalized heat transfer coefficient for various longitudinal positions of the emitter electrode (\(V_0=20 \text{ kV}, \text{Re}=1000 \)).

<table>
<thead>
<tr>
<th>d (cm)</th>
<th>(\sigma_{EHD}/\sigma_{non-EHD})</th>
<th>(h_{EHD}/h_{non-EHD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.98</td>
<td>4.86</td>
</tr>
<tr>
<td>30</td>
<td>2.51</td>
<td>4.39</td>
</tr>
<tr>
<td>50</td>
<td>2.33</td>
<td>4.12</td>
</tr>
</tbody>
</table>

5. Conclusions

A numerical investigation on the strength of EHD-induced secondary flow through a smooth channel is conducted by using the vorticity flux framework. The effects of effectiveness parameters of the EHD as: Reynolds number, applied voltages and obviously arrangements of emitters were studied for evaluation the behavior of the vorticity flux. The results indicated that the behavior of the axial direction profiles of dimensionless vorticity flux and normalized heat transfer coefficient are nearly the same for the EHD-induced flow.

6. References

