Numerical simulation of mixing two fluids of different viscosities in a microchannel with curved stirrer by Lattice Boltzmann Method

Reza Kaveha, Mohammad Sefidb*, Mohsen Mozafari-Shamsic

a Ph.D. Student, Department of Mechanical Engineering, University of Yazd
b Associate Professor, Department of Mechanical Engineering, University of Yazd
c Assistant Professor, Department of Engineering, University of Meybod

ABSTRACT

In the present study, mixing of two fluids of different viscosities in a micro channel with an oscillating curved stirrer was simulated by Multi Relaxation Time Lattice Boltzmann Method and the effect of geometric shape, oscillating speed and amplitude and viscosity logarithmic ratio on mixing efficiency was analyzed. In researches in this field, stirrer is considered as cylinder or rectangle shape and in most these researches, two fluids are same. In this study, a curved stirrer was used for mixing two fluids of different viscosities in micro channel for the first time. Calculations are performed for the dimensionless parameters of the problem including the oscillation amplitude K, viscosity logarithmic ratio R and Strouhal number St for $Re=80$ and $Sc=10$. NASA/LANGLEY LS(1)-0417 (GA(W)-1) airfoil shape was used for curved stirrer. Results showed that mixing efficiency of two fluids of same and different viscosities in micro channel with oscillating curved stirrer was higher than micro channel with oscillating rectangle stirrer. In addition, results revealed that increase in Strouhal number causes increase in mixing efficiency on studied oscillating amplitude. Optimum efficiency is on oscillating amplitude 0.5 on all studied Strouhal numbers. Also mixing efficiency decreases with increase of viscosity logarithmic ratio on studied Strouhal numbers.

KEYWORDS

Mixing, Micro channel, Different viscosities, MRT-LBM, Oscillating curved stirrer.

* Corresponding Author: Email: mhsefid@yazd.ac.ir
1. Introduction

Fluid mixing is an important process in the chemical industry. In mixing systems, fluid can be mixed with any of the other phases: liquid, solid, and gas. Micromixing is mixing at the smallest scale of fluid motion and molecular motion [1]. Active mixers rely on an external energy source to achieve mixing. Mixing caused by micro stirrers is in this category [2].

Shamsoddini et al. [3] numerically investigated the mixing flow in a micromixer with cross-shaped and straight stirrers using ISPH method. It was found that the cross-shaped stirrer is more effective than the straight stirrer. Ghanbari et al. [4] studied the mixing of two fluids with different density and viscosity in a microchannel equipped with an oscillating stirrer by means of commercial code CFX. They showed the maximum mixing index changes in the case of different density and viscosity is lower than the one in case of similar fluids. Ortega-Casanova evaluated the mixing enhancement inside a straight microchannel equipped with a transversely oscillating square cylinder [5] and a rotationally oscillating square cylinder [6], using the commercial software ANSYS-Fluent. He detected oscillating square cylinder and rotationally oscillating square cylinder can improve the mixing efficiency about 10% and 15% respectively. In researches in this field, stirrer is considered as cylinder or rectangle shape and in most these researches, two fluids are same. In this study, a curved stirrer was used for mixing two fluids of different viscosities in micro channel for the first time.

2. Numerical solution

2.1. Geometry

Schematic view of micro channel is shown in Fig. 1. Curved stirrer is in the shape of NASA/LANGLEY LS(1)-0417 (GA(W)-1) airfoil. The stirrers forced to oscillate with the angle of \(\alpha(t) = 2\pi K \sin(2\pi f t) \) where \(K, f_p \) and \(t \) are the dimensionless amplitude, frequency and oscillation time, respectively. Therefore, the angular velocity of the stirrer will be \(\omega(t) = 4\pi^2 f_p K \cos(2\pi f t) \).

![Fig. 1. Schematic view of microchannel](image)

In present study, first fluid viscosity is constant and second one is changed [7].

\[
R = \ln \frac{\mu_1}{\mu_2} \tag{1}
\]

To examine the mixing rate in the present problem, the time-averaged mixing index is used [1].

2.2. Governing equations

Governing equations are:

\[
\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{V} \tag{2}
\]

\[
\rho \frac{D\mathbf{V}}{Dt} = -\nabla P + \mu \nabla^2 \mathbf{V} \tag{3}
\]

\[
\frac{DC}{Dt} = D \nabla^2 C \tag{4}
\]

Where \(\mathbf{V}, P, C \) and \(D_i \) are the velocity vector, pressure, concentration and diffusion respectively.

2.3. Numerical method and boundary condition

A double multiple relaxation time lattice Boltzmann method\(^1\) is employed for solving the governing equations because of the higher efficiency, accuracy, and stability than other LBM schemes. The D2Q9 model for the velocity field [8], while D2Q5 model for the concentration field [9] are used in the present simulation.

For flow and concentration field, Bounce-back boundary condition [8] is applied to the micro channel walls, while Zou and He model [10] and known concentration boundary condition [11] are used for flow and concentration field at the micro channel inlet respectively. For flow and concentration field at the micro channel outlet, Bounce-back boundary condition and constant pressure boundary condition are used respectively. Guo et al. [12] and Li et al. [9] curved boundary treatment are employed to model the velocity and concentration boundary condition on the stirrer surface respectively.

3. Discussion and Results

At the study of geometric shape, we consider a rectangle stirrer \((D*0.213D) \) in a same micro channel. According to Fig. 2. Results showed that mixing efficiency in micro channel with oscillating curved stirrer was higher than micro channel with oscillating rectangle stirrer.

In addition, results revealed that increase in Strouhal number causes increase in mixing efficiency on studied oscillating amplitude. Optimum efficiency is on oscillating amplitude 0.5 on all studied Strouhal numbers.

\(^1\)MRT-LBM
Fig. 2. Mixing efficiency variations related to various Strouhal numbers for curved and rectangle stirrer

The variations of mixing efficiency with respect to the Strouhal numbers at three viscosity logarithmic ratios showed in Fig. 3 and concentration contours for these ratios present in Fig. 4. According to Fig. 3 in each certain Strouhal number with increase of viscosity logarithmic ratio causes decrease in mixing efficiency. According to Fig. 4 at $R=0$, mushroom vortexes are formed completely and affect the entire width of the micro channel so the mixing is well done. However, at $R=1$, mushroom vortexes aren’t formed completely and the contact surface of two fluids is lower than before. At $R=2$, no mushroom vortexes are formed and crescent vortex are formed lower than $R=1$ and the fluid near the walls is less involved in the mixing process. Therefore, the greater the viscosity difference, two fluids become more resistant to deformation and less mixing takes place.

Fig. 3. Mixing efficiency changes related to Various Strouhal numbers at different viscosity logarithmic ratios

Fig. 4. Concentration contours at $K=0.5$ and $St=1$ at a)$R=0$ b)$R=1$ c)$R=2$

4. Conclusions

Based on the simulations, the following results can be expressed:

- Mixing efficiency of two fluids of same and different viscosities in micro channel with oscillating curved stirrer was higher than micro channel with oscillating rectangle stirrer.
- Optimum efficiency is on oscillating amplitude 0.5 on all studied Strouhal numbers.
- In each certain Strouhal number with increase of viscosity logarithmic ratio causes decrease in mixing efficiency.

5. References