[1] A.A. Griffith, The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, (1921) 163-198.
[2] A.C. Eringen, C. Speziale, B. Kim, Crack-tip problem in non-local elasticity, Journal of the Mechanics and Physics of Solids, 25(5) (1977) 339-355.
[3] A.C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, 10(1) (1972) 1-16.
[4] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209.
[5] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & Structures, 83(17-18) (2005) 1526-1535.
[6] E. Madenci, E. Oterkus, Peridynamic theory and its applications, Springer, 2014.
[7] C. Hao, L. Wijerathne, T. ICHIMURA, Stability of dynamic growth of two anti-symmetric cracks using PDS-FEM, Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), 68(1) (2012) 10-17.
[8] O. Weckner, R. Abeyaratne, The effect of long-range forces on the dynamics of a bar, Journal of the Mechanics and Physics of Solids, 53(3) (2005) 705-728.
[9] S.A. Silling, M. Zimmermann, R. Abeyaratne, Deformation of a peridynamic bar, Journal of Elasticity, 73(1-3) (2003) 173-190.
[10] S.A. Silling, F. Bobaru, Peridynamic modeling of membranes and fibers, International Journal of Non-Linear Mechanics, 40(2-3) (2005) 395-409.
[11] W. Gerstle, N. Sau, S. Silling, Peridynamic modeling of concrete structures, Nuclear Engineering and Design, 237(12-13) (2007) 1250-1258.
[12] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive Modeling, Journal of Elasticity, 88(2) (2007) 151-184.
[13] S.A. Silling, Linearized Theory of Peridynamic States, Journal of Elasticity, 99(1) (2010) 85-111.
[14] R.B. Lehoucq, M.P. Sears, Statistical mechanical foundation of the peridynamic nonlocal continuum theory: Energy and momentum conservation laws, Physical Review E, 84(3) (2011) 031112.
[15] S.A. Silling, A coarsening method for linear peridynamics, International Journal for Multiscale Computational Engineering, 9(6) (2011).
[16] R. Lehoucq, S. Silling, Force flux and the peridynamic stress tensor, Journal of the Mechanics and Physics of Solids, 56(4) (2008) 1566-1577.
[17] J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics, SAND Report, 7597 (2011).
[18] J.A. Mitchell, A non-local, ordinary-state-based viscoelasticity model for peridynamics, Sandia National Lab Report, 8064 (2011) 1-28.
[19] B. Kilic, A. Agwai, E. Madenci, Damage prediction in notched composites using peridynamic theory, (2008).
[20] M.J. Taylor, Numerical simulation of thermo-elasticity, inelasticity and rupture in membrane theory, University of California, Berkeley, 2008.
[21] J.T. Foster, S.A. Silling, W.W. Chen, Viscoplasticity using peridynamics, International journal for numerical methods in engineering, 81(10) (2010) 1242-1258.
[22] K. Dayal, K. Bhattacharya, Kinetics of phase transformations in the peridynamic formulation of continuum mechanics, Journal of the Mechanics and Physics of Solids, 54(9) (2006) 1811-1842.
[23] S.A. Silling, O. Weckner, E. Askari, F. Bobaru, Crack nucleation in a peridynamic solid, International Journal of Fracture, 162(1-2) (2010) 219-227.
[24] T.L. Warren, S.A. Silling, A. Askari, O. Weckner, M.A. Epton, J. Xu, A non-ordinary state-based peridynamic method to model solid material deformation and fracture, International Journal of Solids and Structures, 46(5) (2009) 1186-1195.
[25] J.T. Foster, S.A. Silling, W. Chen, An energy based failure criterion for use with peridynamic states, International Journal for Multiscale Computational Engineering, 9(6) (2011).
[26] S. Silling, Dynamic fracture modeling with a meshfree peridynamic code, Computational fluid and solid mechanics, (2003) 641-644.
[27] S.A. Silling, E. Askari, Peridynamic modeling of impact damage, in: ASME/JSME 2004 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2004, pp. 197-205.
[28] Y.D. Ha, F. Bobaru, Characteristics of dynamic brittle fracture captured with peridynamics, Engineering Fracture Mechanics, 78(6) (2011) 1156-1168.
[29] M.S. Breitenfeld, P.H. Geubelle, O. Weckner, S.A. Silling, Non-ordinary state-based peridynamic analysis of stationary crack problems, Computer Methods in Applied Mechanics and Engineering, 272 (2014) 233-250.
[30] J. O’Grady, J. Foster, Peridynamic beams: A non-ordinary, state-based model, International Journal of Solids and Structures, 51(18) (2014) 3177-3183.
[31] J. O’Grady, J. Foster, Peridynamic plates and flat shells: A non-ordinary, state-based model, International Journal of Solids and Structures, 51(25-26) (2014) 4572-4579.
[32] C.T. Wu, B. Ren, A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process, Computer Methods in Applied Mechanics and Engineering, 291 (2015) 197-215.
[33] J. Amani, E. Oterkus, P. Areias, G. Zi, T. Nguyen-Thoi, T. Rabczuk, A non-ordinary state-based peridynamics formulation for thermoplastic fracture, International Journal of Impact Engineering, 87 (2016) 83-94.
[34] E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening, Journal of the Mechanics and Physics of Solids, 86 (2016) 192-219.
[35] K. Oguni, M.L.L. Wijerathne, T. Okinaka, M. Hori, Crack propagation analysis using PDS-FEM and comparison with fracture experiment, Mechanics of Materials, 41 (2009) 1242-1252.
[36] G. Sarego, Q. Le, F. Bobaru, M. Zaccariotto, U. Galvanetto, Linearized State‐based Peridynamics for 2D problems, International Journal for Numerical Methods in Engineering, (2016).