[1] J.R. Davis, ASM specialty handbook: heat-resistant materials, Asm International, 1997.
[2] M.P. Groover, Fundamentals of modern manufacturing: materials processes, and systems, John Wiley & Sons, 2007.
[3] E.M. Trent, P.K. Wright, Metal cutting, Butterworth-Heinemann, 2000.
[4] J. Paro, H. Hänninen, V. Kauppinen, Tool wear and machinability of X5 CrMnN 18 18 stainless steels, Journal of Materials Processing Technology, 119(1-3) (2001) 14-20.
[5] K. Tetal, Machining of Stainless Steels Handbook, ASM International, (1989) 681.
[6] R. Ghosh, Z. Zurecki, J.H. Frey, Cryogenic machining with brittle tools and effects on tool life, in: ASME 2003 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2003, pp. 201-209.
[7] N.B. Fredj, H. Sidhom, C. Braham, Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling, Surface and Coatings Technology, 200(16-17) (2006) 4846-4860.
[8] A.A. Khan, M.I. Ahmed, Improving tool life using cryogenic cooling, Journal of materials processing technology, 196(1-3) (2008) 149-154.
[9] S. Sun, M. Brandt, M. Dargusch, Machining Ti–6Al–4V alloy with cryogenic compressed air cooling, International Journal of Machine Tools and Manufacture, 50(11) (2010) 933-942.
[10] B.D. Jerold, M.P. Kumar, Experimental investigation of turning AISI 1045 steel using cryogenic carbon dioxide as the cutting fluid, Journal of Manufacturing Processes, 13(2) (2011) 113-119.
[11] S. Ravi, M.P. Kumar, Experimental investigation of cryogenic cooling in milling of AISI D3 tool steel, Materials and Manufacturing Processes, 27(10) (2012) 1017-1021.
[12] M. Bermingham, J. Kirsch, S. Sun, S. Palanisamy, M. Dargusch, New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, International Journal of Machine Tools and Manufacture, 51(6) (2011) 500-511.
[13] S.S. Gill, H. Singh, R. Singh, J. Singh, Flank wear and machining performance of cryogenically treated tungsten carbide inserts, Materials and Manufacturing Processes, 26(11) (2011) 1430-1441.
[14] M. Nalbant, Y. Yildiz, Effect of cryogenic cooling in milling process of AISI 304 stainless steel, Transactions of Nonferrous Metals Society of China, 21(1) (2011) 72-79.
[15] B.D. Jerold, M.P. Kumar, Machining of AISI 316 stainless steel under carbon-di-oxide cooling, Materials and Manufacturing Processes, 27(10) (2012) 1059-1065.
[16] V. Srivastava, P.M. Pandey, Performance evaluation of electrical discharge machining (EDM) process using cryogenically cooled electrode, Materials and Manufacturing Processes, 27(6) (2012) 683-688.
[17] V. Dhokia, S. Newman, R. Imani-Asrai, An initial study of the effect of using liquid nitrogen coolant on the surface roughness of Inconel 718 nickel-based alloy in CNC milling, Procedia CIRP, 3 (2012) 121-125.
[18] M. Strano, E. Chiappini, S. Tirelli, P. Albertelli, M. Monno, Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(9) (2013) 1403-1408.
[19] H. Safari, S. Sharif, S. Izman, H. Jafari, D. Kurniawan, Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti–6Al-4V ELI, Materials and Manufacturing Processes, 29(3) (2014) 350-356.
[20] N. Govindaraju, L. Shakeel Ahmed, M. Pradeep Kumar, Experimental investigations on cryogenic cooling in the drilling of AISI 1045 steel, Materials and Manufacturing Processes, 29(11-12) (2014) 1417-1421.
[21] S.R. Nandam, U. Ravikiran, A.A. Rao, Machining of tungsten heavy alloy under cryogenic environment, Procedia materials science, 6 (2014) 296-303.
[22] S.A Mousavi, Experimental investigation of surface roughness in dry and cryogenic turning of AISI 304, B.S thesis, Shahid Montazeri technical university, Mashhad, (2012). (In Persian).
[23] M. Shaw, Metal Cutting PrinciplesOxford University Press, New York, NY, (1984).
[24] A.Fata, M.R. Razfar, Determination of Tool Temperature in Orthogonal Metal Cutting by Finite Element Method and its Comparison with Experimental Work, Amirkabir J. Mech. Eng., 42(3) (2011) 49-59. (In Persian).
[25] Korkut, Ihsan, M. Boy, I. Karacan, U. Seker. "Investigation of chip-back temperature during machining depending on cutting parameters." Materials & design 28, no. 8 (2007) 2329-2335.
[26] M.R Razfar, Fundamental of machining and tools, Amirkabir University, (2011). (In Persian).
[27] A. Taleb, J. Zarkoub, Standard for machine tools test in ISO and DIN systems, Esfahan University of Technology, (2005). (In Persian).
[28] M. Babamiri, Cryogenic cooling, Iran Manufacturing Magazine, No. 38.
[29] M. Tajdari1, S. Z. Chavoshi, E. Shahbazi, Design and requirements of cryogenic cooling process using liquid nitrogen in turning, 2nd manufacturing conference, Esfahan, Iran, (2010). (In Persian).
[30] M. Ghoreishi, V. Tahmasbi, Optimization of material removal rate in dry electro discharge machining process, Modares Mech. Eng., 14(12) (2014) 113-121. (In Persian)
[31] B. Davoodi, B. Eskandari, Investigation of tool life and wear mechanisms in turning of N-155 iron-nickel-base superalloy using response surface methodology, Modares Mech. Eng., 14(15) (2015) 51-58. (In Persian)
[32] S. Assarzadeh, M. Ghoreishi, A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters, The International Journal of Advanced Manufacturing Technology, 64(9-12) (2012) 1459-1477.
[33] Korloy Inc., Cutting Tools (Catalogue), Section B Turning, (2008).
[34] J. P. Davim, ed. Machining: fundamentals and recent advances. Springer Science & Business Media, (2008).