[1] H. Eren, N. Celik, B. Yesilata, Nonlinear flow and heat transfer dynamics of a slot jet impinging on a slightly curved concave surface, International communications in heat and mass transfer, 33(3) (2006) 364-371.
[2] R.E. Chupp, H.E. Helms, P.W. McFadden, Evaluation of internal heat-transfer coefficients for impingement-cooled turbine airfoils, Journal of Aircraft, 6(3) (1969) 203-208.
[3] D. Lee, Y. Chung, S. Won, The effect of concave surface curvature on heat transfer from a fully developed round impinging jet, International Journal of Heat and Mass Transfer, 13(42) (1999) 2489-2497.
[4] N. Saad, S. Polat, W. Douglas, Confined multiple impinging slot jets without crossflow effects, International journal of heat and fluid flow, 13(1) (1992) 2-14.
[5] M. Fenot, E. Dorignac, J.-J. Vullierme, An experimental study on hot round jets impinging a concave surface, International Journal of Heat and Fluid Flow, 29(4) (2008) 945-956.
[6] H. Ahmadi, M. Rajabi-Zargarabadi, A.S. Mujumdar, J. Mohammadpour, NUMERICAL MODELING OF A TURBULENT SEMI-CONFINED SLOT JET IMPINGING ON A CONCAVE SURFACE, Thermal Science, 19(1) (2015).
[7] X. Bu, L. Peng, G. Lin, L. Bai, D. Wen, Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge, International Journal of Heat and Mass Transfer, 90 (2015) 92-101.
[8] K. Elebiary, M. Taslim, Experimental/numerical crossover jet impingement in an airfoil leading-edge cooling channel, Journal of Turbomachinery, 135(1) (2013) 011037.
[9] Y. Xie, P. Li, J. Lan, D. Zhang, Flow and heat transfer characteristics of single jet impinging on dimpled surface, Journal of Heat Transfer, 135(5) (2013) 052201.
[10] C. Lee, K. Lim, S. Lee, Y. Yoon, N. Sung, A study of the heat transfer characteristics of turbulent round jet impinging on an inclined concave surface using liquid crystal transient method, Experimental Thermal and Fluid Science, 31(6) (2007) 559-565.
[11] E.L. Martin, L.M. Wright, D.C. Crites, Impingement heat transfer enhancement on a cylindrical, leading edge model with varying jet temperatures, in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2012, pp. 323-334.
[12] E.L. Martin, L.M. Wright, D.C. Crites, Computational investigation of jet impingement on turbine blade leading edge cooling with engine-like temperatures, in: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2012, pp. 311-322.
[13] E. Öztekin, O. Aydin, M. Avcı, Heat transfer in a turbulent slot jet flow impinging on concave surfaces, International Communications in Heat and Mass Transfer, 44 (2013) 77-82.
[14] J. Taylor, An introduction to error analysis: the study of uncertainties in physical measurements. Univ, Science, Sausalito, CA, 45 (1997) 92.
[15] Y.-T. Yang, T.-C. Wei, Y.-H. Wang, Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface, International Journal of Heat and Mass Transfer, 54(1-3) (2011) 482-489.
[16] R. Goldstein, W. Seol, Heat transfer to a row of impinging circular air jets including the effect of entrainment, International journal of heat and mass transfer, 34(8) (1991) 2133-2147.
[17] T. Craft, L. Graham, B.E. Launder, Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models, International Journal of Heat and Mass Transfer, 36(10) (1993) 2685-2697.
[18] M. Sharif, K. Mothe, Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces, Numerical Heat Transfer, Part B: Fundamentals, 55(4) (2009) 273-294.
[19] V. Gilard, L.-E. Brizzi, Slot jet impinging on a concave curved wall, Journal of fluids engineering, 127(3) (2005) 595-603.
[20] J.L. Lee, Sang-Joon, Stagnation region heat transfer of a turbulent axisymmetric jet impingement, Experimental Heat Transfer, 12(2) (1999) 137-156.