طراحی و ساخت ترانسدیوسر و ابزار التراسونیک در فرایند جوشکاری اغتشاشی اصطکاکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 کاشان بلوار قطب راوند دانشگاه کاشان

چکیده

جوشکاری اغتشاشی اصطکاکی در زمره روش های اتصال دائم است که به دلیل ماهیت ترمومکانیکال اتصال مواد در حالت نیمه جامد و نیروهای جوشکاری بالا، نیازمند ابزار، گیره بندی و ماشین ابزار بسیار مستحکم است. راهکار ترکیب این فرایند با ارتعاش التراسونیک، کاهش نیروهای جوشکاری و بهبود کیفیت اتصال را به همراه دارد. در این تحقیق، ایده نحوه مقایسه اعمال دو نوع ارتعاش التراسونیک محوری و خمشی بر فرایند جوشکاری اغتشاشی اصطکاکی، منجر به ساخت مجموعه ابزار جوشکاری اغتشاشی اصطکاکی و ترانسدیوسر التراسونیک منحصربه فردی گردید. در واقع یکی از اهداف این پژوهش طراحی یگانه ابزاری است که قابلیت ارتعاش در دو مود محوری و خمشی در دو فرکانس مختلف را دارا باشد. همچنین اثرات تغییر جرم و اینرسی مجموعه ابزار بر جوش به دلیل استفاده از مجموعه ابزارهای جداگانه برای هر مود فرکانسی، حذف گردد. در نهایت، مدل نهایی آنالیز مودال شده ساخته شد و تحت اندازه گیری تجربی دامنه ارتعاشات در فرکانس رزونانس دو مود محوری و خمشی قرار گرفت و تأثیر دامنه ارتعاشات در این دو مود به صورت آزمایشگاهی بررسی شد. برتری استفاده از ارتعاش خمشی نسبت به ارتعاش محوری در جهت حصول جوش با کیفیت بالاتر را می توان یکی از نتایج این مطالعه برشمرد. همچنین دو برابر شدن دامنه ارتعاشات از 8 به 16 میکرومتر برای جوشکاری ارتعاشی در مود خمشی، تقویت استحکام اتصال را به همراه داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Manufacturing a Single Ultrasonic Tool Set of Vibrational friction stir welding in Bending and Axial Modes

نویسندگان [English]

  • A. Rezaei Shahreza 1
  • S. Amini 2
1 Department of Mechanical Engineering, Kashan University, Kashan, Iran
چکیده [English]

Friction stir welding has been categorized amongst permanent joining methods. Since its thermomechanical nature, solid-state joining and high welding loads, Friction stir welding process needs sturdy tools, fixture, and machine tool. Combination of this process along with ultrasonic vibrations decreases welding loads and improves the weld quality. In this study, the idea of comparing superimposed axial and bending ultrasonic vibrational modes on friction stir welding process led to producing a unique set of friction stir welding tool along with an ultrasonic transducer. In fact, one of the aims of this study concerns designing a single ultrasonic assisted friction stir welding tool set which will be able to vibrate in both axial and bending modes separately in different frequencies. In addition, the impressive effects of mass and inertia variations on the weld, due to the usage of the distinct tool set for each modal frequency, will be removed. The final modal analyzed model was manufactured and the amplitude of vibrations in both mentioned modes was measured experimentally. Results indicated that the use of bending vibrations leads to the formation of joints with much more quality than implementing the axial vibrations. Furthermore, doubled amplitudes from 8 μm to 16 μm in bending mode, unlike axial mode, improved the weld ultimate tensile strength.

کلیدواژه‌ها [English]

  • Ultrasonic transducer
  • Ultrasonic assisted friction stir welding
  • Axial and bending modes
[1] D. Ensminger, L. J. Bond. Ultrasonics, Fundamentals, Technologies and Applications. 3rd ed: CRC Press, D. Ensminger, L.J. Bond, Ultrasonics, Fundamentals, Technologies and Applications, 3rd ed: CRC Press, Taylor & Francis Group, (2012).
[2] A. Barani, S. Amini, H. Paktinat, Built-up edge investigation in vibration drilling of Al2024-T6, Ultrasonics, 45 (2014) 1300–1310.
[3] R. Nosouhi, S. Behbahani, S. Amini, M. R. Khosrojerdi, Experimental and analytical study of the elliptical vibrationassisted turning process with the dynamic friction model, Engineering Manufacturing, 228 (6) (2014) 837–846.
[4] S. Amini, M. Mohammad Nazari, A. Rezaei, Bending vibrational tool for friction stir welding process, Int J Adv Manuf Technol, 222 (2015) 91-95.
[5] S. Amini, M.R. Amiri., A. Barani, Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy, Int J Adv Manuf Technol, 76 (1-4) (2015) 255–61.
[6] M. Vahdati, R. Mahdavinejad, S. Amini, A. Abdullah, K. Abrinia, Design and manufacture of vibratory forming tool to develop ultrasonic vibration assisted incremental sheet metal forming process, Modares Mech Eng, 14(11) (2014) 68–76. (in Persian).
[7] S. Amini, M.R.Amiri, Study of ultrasonic vibrations’ effect on friction stir welding, Int J Adv Manuf Technol, 73 (2014) 127-135.
[8] Y.F. Sun, Y.Konishi, M. Kamai, H. Fujii, Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding, Materials and Design, 47 (2013) 842–849.
[9] X. Liu, C.Wu, G. Kumar Padhy, Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding, Scripta Materialia, 102 (2015) 95–98.
[10] K. Park, Development and Analysis of Ultrasonic assisted friction stir welding process, The University of Michigan, (2009).
[11] L. Ruilin, H.Diqiu, L. Luocheng, Y. Shaoyong, Y. Kunyu, A study of the temperature field during ultrasonic-assisted friction-stir welding, Int J Adv Manuf Technol, 81 (2014) 2087-2098.
[12] L. Shi, C.S. Wu, X.C. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, Materials Processing Technology, 222 (2015) 91-102.
[13] K. J. Dharmaraj, C.D. Cox, A. M. Strauss, G. E. Cook, Ultrasonic thermometry for friction stir spot welding, Measurement, 49 (2014) 226–235.
[14] Y. Rostamian, A. Seidanloo, H. Sohrabpoor, R. Teimouri, Experimental Studies on ultrasonically associated stir welding of AA6061, Archives of Civil and Mechanical Engineering, 15 (2014) 335-346.
[15] K. Panneerselvam, S. Aravindan, A. N. Haq, Hybrid of ANN with genetic algorithm for optimization of frictional vibration joining process of plastics, Int J Adv Manuf Technol, 42 (2009) 669-677.
[16] H. Montazerolghaem, M.Badrossamay, A. R. Fadaei Tehrani, Investigation of Vibration Assisted Friction Stir Welding and Comparison with Conventional Friction Stir Welding, 3rd International Conference on Manufacturing Engineering, (2011).
[17] K. Nakamura, Ultrasonic Transducers: Materials and Design for Sensors, Actuators and Medical Applications, 1st ed: Woodhead Publishing, (2012).
[18] www.matweb.com.
[19] J. Zhang, R.J. Perez, E. J. Lavernia, Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials, Journal of Materials Science, 28 (1993) 2395–2404.
[20] K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy, Materials and Design, 29 (2008) 362–373.
[21] H. Su, C.S.Wu, M. Bachmann, M. Rethmeier, Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding, Materials and Design, 77 (2015) 114–125.
[22] A. Arora, A and T. Deb Roy, Toward optimum friction stir welding tool shoulder diameter, Scripta Materialia, 64 (2011) 9–12.
[23] www.astm.org, Standard Test Methods for Tension Testing of Metallic Materials, p. E8/E8M – 11, (2012).
[24] S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of Materials Processing Technology, 203 (2008) 411–419.