شبیه‌سازی توزیع تنش در سیستم پوشش سد‌حرارتی دولایه و درجه بندی شده YSZ/ NiCrAlY و مقایسه با نتایج اندازه‌گیری تنش به روش نانوفرورونده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری دانشگاه علم و صنعت باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی- واحد تهران شرق دانشگاه تهران

2 استادیار، گروه پژوهشی خودرو و نیرومحرکه-پژوهشکده برق، مکانیک و ساختمان- پژوهشگاه استاندارد - کرج

3 استادیار، دانشکده فنی و مهندسی- دانشگاه آزاد اسلامی- واحد تهران شرق

4 مالک اشتر*مواد رئیس پژوهشگاه مواد و انرژی

چکیده

در این پژوهش یک روش عددی مبتنی بر المان محدود به منظور شبیه‌سازی توزیع تنش در پوشش سد حرارتی معمولی و درجه‌بندی شده YSZ/ NiCrAlYپاشش پلاسمائی شده بر روی زیرلایه Hastelloy-x توسعه یافت.پوشش سد‌حرارتی معمولی و درجه بندی شده به روش پاشش پلاسمائی اعمال و مشخصه‌یابی پوشش‌ها با استفاده از مطالعات متالوگرافی توسط میکروسکوپ نوری و الکترونی روبشی انجام شد.نتایج شبیه‌سازی توزیع تنش حاکی از آن بود که در نمونه های شوک دیده تحت سیکل حرارتی فاقد زمان توقف در دمای تشکیل TGO، مقدار متوسط تنش ماکزیمم از 29 مگاپاسکال در سیستم دو لایه معمولی (فصل مشترک لایه روئی/لایه واسط) به 15/3 مگاپاسکال در سیستم درجه-بندی شده سه لایه (فصل مشترک 50% NiCrAlY- 50% YSZ / YSZ) و 1/8 مگاپاسکال در سیستم درجه بندی شده پنج لایه (فصل مشترک 25% NiCrAlY- 75% YSZ / YSZ) کاهش یافته و توزیع تنش در فصل مشترکها یکنواخت شده است که این امر به افزایش عمر سیستم سد حرارتی کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of Stress in Conventional and Functionally Graded Thermal Barrier Coating YSZ/ NiCrAlY and Comparison with Results of the Nano-Indentation Stress Measurement Method

نویسندگان [English]

  • nasim nayebpashaee 1
  • amir afkar 2
  • majid nourikamari 2
  • nima rasekhsaleh 3
  • mehdi hadavi 4
1 PhD Iran university of science & Technology Assistant Prof., Young Researchers and Elite Club-Tehran East Branch- Islamic Azad University, Tehran, Iran
2 Assistant Prof., Faculty of Electrical- Mechanical and Construction Engineering-Automative Engineering – Standard Research Institute, Karaj, Iran
3 Assistant Prof., School of Engineering- Tehran East Branch- Islamic Azad University, Tehran, Iran
4 Materials and Energy Research Center
چکیده [English]

Thermal barrier coatings (TBCs) are one of the most conventionally- used protective materials which are employed as insulation media to save underlying metallic substrate from harmful effects at high temperature services In this study, a finite element-based numerical method was developed to simulate stress distribution in conventional and functionally graded thermal barrier coatings applied on the Hastelloy-x. Comparisons of simulation model results with experimental results of nano-indentation stress measurement method showed good agreement. The results of simulation showed that in samples after thermal shock without oxidation time (without Thermally Grown Oxide layer-TGO), the average value of the maximum stress is 29 MPa in duplex TBC (interface of top coat /boncoat), 3.15 MPa in three-layer FG-TBC system (interface of 50% NiCrAlY - 50% YSZ / YSZ) and 1.8 MPa in five-layer FG-TBC system (interface of 25% NiCrAlY- 75% YSZ / YSZ). Also, the stress distribution is more uniform in five-layer FG-TBC system that helps to increase the performance and extend the life time of thermal barrier system.

کلیدواژه‌ها [English]

  • Functionally Graded Thermal barrier coating
  • finite element method
  • Residual stress
  • Nanoindentation
[1]  decnavdA ,aladneM .B dna ,abźdawS .L ,.M ,kyzcńamteH senigne-orea ni sgnitaoc evitcetorp dna slairetam dna slairetaM ni stnemeveihcA fo lanruoJ .noitacilppa .183-273 .p :(1)42 .7002 ,gnireenignE gnirutcafunaM
[2]  Tamarin, Y., Protective coatings for turbine blades. 2002: ASM international.
[3]  Clarke, D.R. and S.R. Phillpot, Thermal barrier coating materials. Materials today, 2005. 8(6): p. 22-29.
[4]    Goswami, B., A.K. Ray, and S. Sahay, Thermal barrier coating system for gas turbine application-A review. High Temperature materials and processes, 2004. 23(2): p. 73-92.
[5]  Smarsly, W. Coatings for advanced aero engine materials. in 8 th HIPIMS Conference. 2009.
[6]  Vaßen, R., et al., Overview on advanced thermal barrier coatings. Surface and Coatings Technology, 2010. 205(4): 938-942.
[7] Hetmańczyk, M., L. Swadźba, and B. Mendala, Advanced materials and protective coatings in aero-engines application. Journal of Achievements in Materials and Manufacturing Engineering, 2007. 24(1): p. 372-381.
[8] Karaoglanli, A., et al., Structure and durability evaluation of YSZ+ Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions. Surface and Coatings Technology, 2011. 205: p. S369-S.373
[9] Chen, W., et al., TGO growth and crack propagation in a thermal barrier coating. Journal of Thermal Spray Technology, 2008. 17(5-6): p. 858.
[10] Xu, Z.-H. and X. Li, Residual stress determination using nanoindentation technique, in Micro and nano mechanical testing of materials and devices. 2008, Springer. p. 136-150.
[11]  Zhu, L.-N., et al., Measurement of residual stresses using nanoindentation method. Critical Reviews in Solid State and Materials Sciences, 2015. 40(2): p. 77-89.
[12]  Zhu, J., et al., Cross-sectional residual stresses in thermal spray coatings measured by moiré interferometry and nanoindentation technique. Journal of thermal spray technology, 2012. 21(5): p. 810-817.
[13]  Moradi, M. and E. Golchin, Investigation on the effects of process parameters on laser percussion drilling using finite element methodology; statistical modelling and optimization. Latin American Journal of Solids and Structures, 2017. 14(3): p. 464-484.
[14]  Dean, J., G. Aldrich-Smith, and T. Clyne, Use of nanoindentation to measure residual stresses in surface layers. Acta Materialia, 2011. 59(7): p. 2749-2761.
[15] Alaboodi, A.S. and Z. Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings. Journal of King Saud University-Engineering Sciences, 2019. 31(1): p. 61-69.
[16]  Bäker, M., Finite element simulation of interface cracks in thermal barrier coatings. Computational Materials Science, 2012. 64: p. 79-83.
[17] Li, B., et al., Design of thermal barrier coatings thickness for gas turbine blade based on finite element analysis. Mathematical Problems in Engineering, 2017. 2017.
[18]  Wang, L., et al., Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying. Ceramics International, 2012. 38(5): p. 3595-3606.
[19]  Moradi, M., M. Ghoreishi, and A. Rahmani, Numerical and experimental study of geometrical dimensions on laser-TIG hybrid welding of stainless steel 1.4418. Journal of Modern Processes in Manufacturing and Production, 2016. 5(2): p. 21-31.
[20] Qiao, J.-H., et al., A 3D finite-difference model for the effective thermal conductivity of thermal barrier coatings produced by plasma spraying. International Journal of thermal sciences, 2013. 65: p. 120-126.
[21]  Khoddami, A., A. Sabour, and S. Hadavi, Microstructure formation in thermally-sprayed duplex and functionally graded NiCrAlY/Yttria-Stabilized Zirconia coatings. Surface and Coatings Technology, 2007. 201(12): p. 6019-6024.
[22] Watremetz, B., M. Baietto-Dubourg, and A. Lubrecht, 2D thermo-mechanical contact simulations in a functionally graded material: A multigrid-based approach. Tribology international, 2007. 40(5): p. 754-762.
[23]   Zhang, X., et al., Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method. Materials & design, 2006. 27(4): p. 308-315.
[24]  Saeedi, B., et al., Influence of the Thermal Barrier Coatings Design on the Oxidation Behavior. Journal of materials science & technology, 2009. 25(4): p. 499.
[25]   Akbarpour, S., H. Motamedian, and A. Abedian. Micromechanical FEM modeling of thermal stresses in functionally graded materials. in 26th International congress of the Aeronautical Sciences. 2008.
[26]  Guo, L., et al., Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings. Journal of Alloys and Compounds, 2017. 698: p. 13-19.
[27]  Bäker, M., Influence of material models on the stress state in thermal barrier coating simulations. Surface and Coatings Technology, 2014. 240: p. 301-310.
[28]  Chen, H., et al., Design, preparation, and characterization of graded YSZ/La2Zr2O7 thermal barrier coatings. Journal of the American Ceramic Society, 2010. 93(6): p.1732-1740.
[29]  Haynes International, I., https://www.haynesintl.com.HASTELLOY ® X ALLOY. (1997).
[30] Wang, L., et al., Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying. Ceramics International, 2012. 38(5): p. 3595-3606.
[31]  Jiang, Y. and H. Fan, A micromechanics model for predicting the stress–strain relations of filled elastomers. Computational Materials Science, 2013. 67: p. 104-108.
[32] Hosseini-Toudeshky, H., B. Anbarlooie, and J. Kadkhodapour, Micromechanics stress–strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding. Materials & Design, 2015. 68: p. 167-176.
[33] Langroudi, A.E., A brief review of nanoindentation technique and its applications in hybrid nanocomposite coatings. Int. J. Bio-Inorg. Hybd. Nanomat, 2013. 2(2): p.337-344.
[34]  Liu, Y., Fracture toughness assessment of shales by nanoindentation. 2015.
[35]  Mao, W., et al., Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique. Surface and Coatings Technology, 2012. 206(21): p. 4455-4461.
[36]  Zhao, X. and P. Xiao, Residual stresses in thermal barrier coatings measured by photoluminescence piezospectroscopy and indentation technique. Surface and Coatings Technology, 2006. 201(3-4): p. 1124-1131.
[37]   Meng, Q., et al., Influence of the residual stress on the nanoindentation-evaluated hardness for zirconiumnitride films. Surface and Coatings Technology, 2012. 206(14): p.3250-3257.
[38]  Mahade, S., et al., Failure analysis of Gd2Zr2O7/ YSZ multi-layered thermal barrier coatings subjected to thermal cyclic fatigue. Journal of Alloys and Compounds, 2016. 689: p. 1011-1019.
[39]  Mohammadi, M., et al., Thermal shock properties and microstructure investigation of LVPS and HVOFCoNiCrAlYSi coatings on the IN738LC superalloy, Vacuum, 2013. 88: p.124-129.
[40]  Moridi, A., M. Azadi, and G. Farrahi. Numerical simulation of thermal barrier coating system under thermo-mechanical loading. in Word Congress on Engineering. 2011.
[41] Johari, A.D. and M.M. Rahman. A review of advance thermal barrier coating architecture. in The 3rd National  Graduate Conference (Nat Grad 2015). Malaysia: Universiti Tenaga Nasional, Putrajaya Campus. 2015.
[42]   Jin, Z.-H. and R. Batra, Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids, 1996. 44(8): p. 1221-1235.
[43]  Stathopoulos, V., et al., Design of functionally graded multilayer thermal barrier coatings for gas turbine application. Surface and Coatings Technology, 2016. 295: p. 20-28.
[44] MANUAL, O., Aircraft characteristics airport and maintenance planning. Airbus.
[45]  Afrasiabi, A., M. Saremi, and A. Kobayashi, A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+ Al2O3 and YSZ/Al2O3. Materials Science and Engineering: A, 2008. 478(1-2): p. 264-269.
[46]  Khor, K. and Y. Gu, Thermal properties of plasmasprayed functionally graded thermal barrier coatings. Thin Solid Films, 2000. 372(1-2): p. 104-113.
[47]  Zhu, L.-N., et al., Measurement of residual stresses using nanoindentation method. Critical Reviews in Solid State and Materials Sciences, 2015. 40(2): p. 77-89.
[48]  Marinis, A., et al., Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens. The Journal of prosthetic dentistry, 2013. 109(3): p. 165-171.
[49]  Baig, M., et al., Properties and residual stress distribution of plasma sprayed magnesia stabilized zirconia thermal barrier coatings. Ceramics International, 2014. 40(3): p. .4853-4868.