مطالعه ارتعاش آزاد طولی نانولوله های کربنی مارپیچی تک جداره با روش شبیه سازی دینامیک مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه زنجان، زنجان، ایران

2 آزمایشگاه تحقیقاتی سازه های هوشمند و مواد پیشرفته، دانشکده مهندسی مکانیک، دانشگاه زنجان، زنجان، ایران

چکیده

در این مقاله ارتعاش آزاد طولی نانولوله های کربنی مارپیچی تک جداره برای شرایط مرزی مختلف با روش شبیه سازی دینامیک مولکولی مورد بررسی قرار گرفته است. تاکنون با بهره‌گیری از این روش، رفتار ارتعاشی طولی این شکل از نانولوله ها مورد مطالعه قرار نگرفته بود لذا در پژوهش حاضر با استفاده از روش مذکور فرکانس اصلی مربوط به ارتعاشات طولی نانولوله های کربنی مارپیچی تحت پتانسیل رِبو و بدون در نظر گرفتن اثر گرمایی بدست آمده است. در ادامه، مطالعه پارامتریک مسئله مورد توجه قرار گرفت و تأثیر قطر لوله مارپیچ، تعداد گام فنری و نوع شرایط مرزی بر فرکانس اصلی ارزیابی شد. نتایج حاکی از آن بود که با افزایش قطر لوله و تعداد گام فنری (یا طول نانولوله مارپیچی) فرکانس اصلی طولی کاهش می یابد. همچنین در شرایط مرزی گیردار ـ گیردار، مقادیر فرکانس اصلی طولی نانولوله های کربنی مارپیچی نسبت به دو شرایط مرزی گیردار ـ تکیه گاه ساده و یکسر گیردار همواره بزرگتر می‌باشد. از نتایج پژوهش حاضر در آینده می توان در طراحی و تحلیل نانوحسگرها و نانومحرک‌هایی که در ساختار آنها از نانولوله‌های کربنی مارپیچی استفاده می گردد، بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Free Longitudinal Vibration of Single-Walled Coiled Carbon Nanotubes (SWCCNTs) using Molecular Dynamics Simulation

نویسندگان [English]

  • Farshid Darvishi 1
  • Omid Rahmani 2
1 Univ of Zanjan
2 University of Zanjan
چکیده [English]

In this paper, the free longitudinal vibration of single-walled coiled carbon nanotubes (SWCCNTs) with various boundary conditions (BCs) is investigated via Molecular Dynamics (MD) simulation method. Subsequently the detection of carbon nanotubes, their uses advantage to a wide range of engineering, biophysics and materials areas, because of their great mechanical and electrical properties. Heretofore vibration behavior of the single-walled coiled carbon nanotubes had not been studied with this technique, so using this method, longitudinal fundamental frequencies of single-walled coiled carbon nanotubes has been obtained by applying Reactive Empirical Bond Order (REBO) potential without considering thermal effects. In order to parametric study, the influence of the coiled carbon nanotubes diameter, number of pitch and boundary conditions on the fundamental frequencies is evaluated. The results indicated that increasing the tubes diameter and number of pitch (or length of single-walled coiled carbon nanotubes) lead to reducing the fundamental frequencies. Furthermore, the clamped–clamped single-walled coiled carbon nanotubes’s fundamental frequency is always higher than cantilevered one. The results of this study can be used in vibration analysis of the Nano sensor and Nano actuator with coiled carbon nanotubes elements.

کلیدواژه‌ها [English]

  • Coiled Carbon Nanotubs
  • Molecular Dynamics Simulation
  • Longitudinal Vibration
  • REBO Potential
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348) (1991) 56-58.
[2] M. Zhang, J. Li, Carbon nanotube in different shapes, Materials Today, 12(6) (2009) 12-18.
[3] S. Ihara, S. Itoh, J.-i. Kitakami, Helically coiled cage forms of graphitic carbon, Physical Review B, 48(8) (1993) 5643-5647.
[4] L.P. Biró, S.D. Lazarescu, P.A. Thiry, A. Fonseca, J.B. Nagy, A.A. Lucas, L. Ph, Scanning tunneling microscopy observation of tightly wound, single-wall coiled carbon nanotubes, EPL (Europhysics Letters), 50(4) (2000) 494.
[5] J.H. Chang, W. Park, Nano elastic memory using carbon nanocoils Journal of Nano and Bio Tech, 3(1) (2006) 30-35.
[6] A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J.B. Nagy, C. Van Haesendonck, Coiled Carbon Nanotubes as Self-Sensing Mechanical Resonators, Nano Letters, 4(9) (2004) 1775-1779.
[7] D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grutzmacher, Three-dimensional nanosprings for electromechanical sensors, in:  Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 15-18.
[8] D. Xu, L. Zhang, L. Dong, B. Nelson, Nanorobotics for NEMS Using Helical Nanostructures, in: B. Bhushan (Ed.) Encyclopedia of Nanotechnology, Springer Netherlands, 2012, pp. 1715-1721.
[9] K.T. Lau, M. Lu, D. Hui, Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures, Composites Part B: Engineering, 37(6) (2006) 437-448.
[10] K. Hernadi, L. Thiên-Nga, L. Forró, Growth and Microstructure of Catalytically Produced Coiled Carbon Nanotubes, The Journal of Physical Chemistry B, 105(50) (2001) 12464-12468.
[11] A. Volodin, M. Ahlskog, E. Seynaeve, C. Van Haesendonck, A. Fonseca, J.B. Nagy, Imaging the Elastic Properties of Coiled Carbon Nanotubes with Atomic Force Microscopy, Physical Review Letters, 84(15) (2000) 3342-3345.
[12] X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, Y. Nakayama, Mechanics of a Carbon Nanocoil, Nano Letters, 3(9) (2003) 1299-1304.
[13] T. Hayashida, L. Pan, Y. Nakayama, Mechanical and electrical properties of carbon tubule nanocoils, Physica B: Condensed Matter, 323(1–4) (2002) 352-353.
[14] W.M. Huang, Mechanics of coiled nanotubes in uniaxial tension, Materials Science and Engineering: A, 408(1–2) (2005) 136-140.
[15] A.F. da Fonseca, D.S. Galvão, Mechanical Properties of Nanosprings, Physical Review Letters, 92(17) (2004) 175502.
[16] F.d.F. Alexandre, C.P. Malta, D.S. Galvão, Mechanical properties of amorphous nanosprings, Nanotechnology, 17(22) (2006) 5620.
[17] K. Sanada, Y. Takada, S. Yamamoto, Y. Shindo, Analytical and Experimental Characterization of Stiffness and Damping in Carbon Nanocoil Reinforced Polymer Composites, Journal of Solid Mechanics and Materials Engineering, 2(12) (2008) 1517-1527.
[18] S.H. Ghaderi, E. Hajiesmaili, Molecular structural mechanics applied to coiled carbon nanotubes, Computational Materials Science, 55(0) (2012) 344-349.
[19] S.H. Ghaderi, E. Hajiesmaili, Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method, Materials Science and Engineering: A,  (2013) 225-234.
[20] L. Liu, H. Gao, J. Zhao, J. Lu, Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations, Nanoscale Res Lett, 5(3) (2010) 478-483.
[21] J. Wang, T. Kemper, T. Liang, S.B. Sinnott, Predicted mechanical properties of a coiled carbon nanotube, Carbon, 50(3) (2012) 968-976.
[22] J. Wu, J. He, G.M. Odegard, S. Nagao, Q. Zheng, Z. Zhang, Giant Stretchability and Reversibility of Tightly Wound Helical Carbon Nanotubes, Journal of the American Chemical Society, 135(37) (2013) 13775-13785.
[23] N. Khani, M. Yildiz, B. Koc, Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study, Materials & Design, 109 (2016) 123-132.
[24] M.M.S. Fakhrabadi, A. Amini, F. Reshadi, N. Khani, A. Rastgoo, Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes, Computational Materials Science, 73 (2013) 93-112.
[25] G. Cao, X. Chen, J.W. Kysar, Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids, 54(6) (2006) 1206-1236.
[26] Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Assessment of timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics, Advances in Applied Mathematics and Mechanics, 1(1) (2009) 89-106.
[27] Y.-G. Hu, K.M. Liew, Q. Wang, Nonlocal Continuum Model and Molecular Dynamics for Free Vibration of Single-Walled Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, 11(12) (2011) 10401-10407.
[28] F. Khademolhosseini, A.S. Phani, A. Nojeh, N. Rajapakse, Nonlocal Continuum Modeling and Molecular Dynamics Simulation of Torsional Vibration of Carbon Nanotubes, IEEE Transactions on Nanotechnology, 11(1) (2012) 34-43.
[29] R. Ansari, S. Ajori, B. Arash, Vibrations of single- and double-walled carbon nanotubes with layerwise boundary conditions: A molecular dynamics study, Current Applied Physics, 12(3) (2012) 707-711.
[30] W.-H. Chen, C.-H. Wu, Y.-L. Liu, H.-C. Cheng, A theoretical investigation of thermal effects on vibrational behaviors of single-walled carbon nanotubes, Computational Materials Science, 53(1) (2012) 226-233.
[31] C. Chuang, Y.-C. Fan, B.-Y. Jin, Dual Space Approach to the Classification of Toroidal Carbon Nanotubes, Journal of Chemical Information and Modeling, 49(7) (2009) 1679-1686.
[32] C. Chuang, Y.-C. Fan, B.-Y. Jin, Generalized Classification Scheme of Toroidal and Helical Carbon Nanotubes, Journal of Chemical Information and Modeling, 49(2) (2009) 361-368.
[33] C. Chuang, B.-Y. Jin, Hypothetical toroidal, cylindrical, and helical analogs of C60, Journal of Molecular Graphics and Modelling, 28(3) (2009) 220-225.
[34] C. Chuang, Y.C. Fan, B.Y. Jin, Systematics of Toroidal, Helically-Coiled Carbon Nanotubes, High-genus Fullernens, and Other Exotic Graphitic Materials, Procedia Engineering, 14(0) (2011) 2373-2385.
[35] C. Chuang, Y.-C. Fan, B.-Y. Jin, On the structural rules of helically coiled carbon nanotubes, Journal of Molecular Structure, 1008(0) (2012) 1-7.
[36] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of Chemical Physics, 112(14) (2000) 6472-6486.
[37] W.B. Donald, A.S. Olga, A.H. Judith, J.S. Steven, N. Boris, B.S. Susan, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 14(4) (2002) 783.
[38] O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Atomistic modeling of the fracture of polycrystalline diamond, Physical Review B, 61(6) (2000) 3877-3888.