طراحی مسیر پرواز گروهی هواپیماها با الگوریتم ترکیبی لیاپانوف و پتانسیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه اصفهان

2 هیات علمی/دانشگاه اصفهان-دانشکده مکانیک

چکیده

در این مقاله به بحث، بررسی و توسعه الگوریتم طراحی مسیر برای مأموریت تعقیب هدف متحرک پرواز گروهی هواپیماهای بدون سرنشین پرداخته می شود. مطابق با الزامات هواپیمای بدونسرنشین بال ثابت، برای تعقیب هدف متحرک و همچنین مأموریت دوری از موانع در محیط های پیچیده، الگوریتم جدیدی از ترکیب الگوریتم میدان برداری لیاپانوف با الگوریتم میدان پتانسیل بهبود یافته ارائه می شود. الگوریتم دینامیکی جدید ارائه شده از مزایای الگوریتم پتانسیل بهبود یافته برای دوری از موانع و همچنین از قابلیت الگوریتم میدان برداری لیاپانوف برای تعقیب اهداف متحرک استفاده می نماید. از مزایای این الگوریتم، درلحظه یا برخط بودن و پویایی آن برای تعقیب هدف متحرک و در عین حال دوری از موانع و همچنین قابلیت محاسباتی سریع می باشد که سبب می شود الگوریتم در محیط های پیچیده به خوبی عمل نماید. در ادامه الگوریتم ارائه شده برای پرواز گروهی هواپیماهای بدون سرنشین طراحی می شود. نتایج ارائه شده به خوبی بیانگر آن است که الگوریتم ترکیبی ارائه شده، قابلیت پیاده سازی در محیطهای پیچیده را دارا می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Unmanned Aerial Vehicle Formation Flying Path Plan by Combined Algorithm of Potential and Lyapunov

نویسندگان [English]

  • masih fathi 1
  • Maryam Malekzadeh Varnosfadrani 2
1 university of isfahan
چکیده [English]

This paper discussed and introduced a new path-planning algorithm, based on improved potential field and Lyapunov guidance vector field. According to the requirements of the unmanned aerial vehicle for tracking and obstacle avoidance mission, a real-time method is proposed by combined algorithm of Lyapunov and potential. The features of this newly introduced algorithm are real-time, fast computing and obstacle avoidance capability which causes the algorithm to perform well in complex environments and applications like coordinated tracking of unmanned aerial vehicles. Improved potential flow field primarily provides obstacle avoidance feature and Lyapunov guidance vector field provides tracking feature for this newly introduced algorithm. To achieve the mission of tracking the target and avoid the obstacle at the same time, the guidance vector field by Lyapunov guidance vector field is taken as the original vector field of improved potential flow field. The results prove that the new hybrid and combined method is applicable to complex environments and complex application like coordinate tracking of moving target.

کلیدواژه‌ها [English]

  • Lyapunov guidance vector field
  • Improved potential flow field
  • Unmanned aerial vehicle
  • Tracking
[1] E. Frew, D. Lawrence, Cooperative Stand-off Tracking of Moving Targets by a Team of Autonomous Aircraft, in: AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2005.
 [2] R. Rysdyk, C. Lum, J. Vagners, Autonomous Orbit Coordination for Two Unmanned Aerial Vehicles, in: AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2005.
 [3] M.K. Ardakani, M. Tavana, A decremental approach with the A algorithm for speeding-up the optimization process in dynamic shortest path problems, Measurement, 60 (2015) 299-307.
 [4] M. Shaoa, D. Shin, K. Shin, Autonomous Navigation of Nonholonomic Mobile Robots Using Generalized Voronoi Diagrams, Journal of the Korean Society of Manufacturing Technology Engineers, 24(1) (2015) 98-102.
 [5] A.B. Curtis, Path planning for unmanned air and ground vehicles in urban environments, Brigham Young University, 2008.
[6] C.b. Moon, W. Chung, Kinodynamic Planner Dual[1]Tree RRT (DT-RRT) for Two-Wheeled Mobile Robots Using the Rapidly Exploring Random Tree, IEEE Transactions on Industrial Electronics, 62(2) (2015) 1080-1090.
[7] P. Yao, H. Wang, Z. Su, Hybrid UAV path planning based on interfered fluid dynamical system and improved RRT, in: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 000829-000834.
 [8] J. Ni, K. Wang, H. Huang, L. Wu, C. Luo, Robot path planning based on an improved genetic algorithm with variable length chromosome, in: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC[1]FSKD), 2016, pp. 145-149.
 [9] D.P. Horner, A.J. Healey, Use of artificial potential fields for UAV guidance and optimization of WLAN communications, in: 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), 2004, pp. 88-95.
 [10] M. Nieuwenhuisen, M. Schadler, S. Behnke, Predictive potential field-based collision avoidance for multicopters, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, (2013).
[11] T. Paul, T.R. Krogstad, J.T. Gravdahl, UAV formation flight using 3D potential field, in: 2008 16th Mediterranean Conference on Control and Automation, 2008, pp. 1240-1245.
[12] Y. Koren, J. Borenstein, Potential field methods and their inherent limitations for mobile robot navigation, in: Proceedings. 1991 IEEE International Conference on Robotics and Automation, 1991, pp. 1398-1404 vol.1392.
 [13] J. Ni, W. Wu, J. Shen, X. Fan, An improved VFF approach for robot path planning in unknown and dynamic environments, Mathematical Problems in Engineering, 2014 (2014).
[14] J. Ni, W. Wu, J. Shen, X. Fan, An Improved VFF Approach for Robot Path Planning in Unknown and Dynamic Environments, Mathematical Problems in Engineering, 2014 (2014) 10.
[15] S. Patil, J.v.d. Berg, S. Curtis, M.C. Lin, D. Manocha, Directing Crowd Simulations Using Navigation Fields, IEEE Transactions on Visualization and Computer Graphics, 17(2) (2011) 244-254.
[16] B.-q. Ye, M.-f. Zhao, Y. Wang, Research of path planning method for mobile robot based on artificial potential field, in: 2011 International Conference on Multimedia Technology, 2011, pp. 3192-3195.
[17] E. Burgos, S. Bhandari, Potential flow field navigation with virtual force field for UAS collision avoidance, in: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp. 505-513.
[18] Q. Li, L. Wang, B. Chen, Z. Zhou, An improved artificial potential field method for solving local minimum problem, in: 2011 2nd International Conference on Intelligent Control and Information Processing, 2011, pp. 420-424.
[19] E.W. Frew, D.A. Lawrence, S. Morris, Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields, Journal of Guidance, Control, and Dynamics, 31(2) (2008) 290-306.
[20] D. Lawrence, Lyapunov Vector Fields for UAV Flock Coordination, in: 2nd AIAA "Unmanned Unlimited" Conf. and Workshop & Exhibit, American Institute of Aeronautics and Astronautics, 2003.
 [21] E.W. Justh, P.S. Krishnaprasad, Steering laws and continuum models for planar formations, in: Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, 2003, pp. 3609-3614 vol.3604.
 [22] D.A. Paley, N.E. Leonard, R. Sepulchre, Oscillator Models and Collective Motion: Splay State Stabilization of Self-Propelled Particles, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp. 3935-3940.
[23] D.A. Paley, N.E. Leonard, R. Sepulchre, D. Grunbaum, J.K. Parrish, Oscillator Models and Collective Motion, IEEE Control Systems, 27(4) (2007) 89-105.
 [24] R. Sepulchre, D. Paley, N. Leonard, Collective Motion and Oscillator Synchronization, in: V. Kumar, N. Leonard, A.S. Morse (Eds.) Cooperative Control: A Post-Workshop Volume 2003 Block Island Workshop on Cooperative Control, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 189-205.
[25] R. Wise, R. Rysdyk, UAV Coordination for Autonomous Target Tracking, in: AIAA Guidance, Navigation, and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2006.
 [26] E. Rimon, D.E. Koditschek, Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, 8(5) (1992) 501-518.
[27] S. Waydo, R.M. Murray, Vehicle motion planning using stream functions, in: Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 2484-2491 vol.2482.