تشخیص عیوب بر مبنای مدل و رفتار دینامیکی سیستم تعلیق خودرو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی گروه مکانیک، دانشگاه فردوسی، مشهد، ایران

2 دانشیار، مهندسی مکانیک، دانشگاه فردوسی، مشهد

چکیده

در این پژوهش بهمنظور افزایش ایمنی و قابلیت اعتماد خودرو، روشی نو و کارآمد بر مبنای مدل و رفتار دینامیکی آن باقابلیت کاربرد عملی برای تشخیص دقیق و سریع عیوب سیستم تعلیق معرفی شده است. تاکنون روشهای متنوعی برای شناسایی عیوب سیستم تعلیق ارائه شده است که اکثر آنها شامل الگوریتم های پیچیده و فاقد کاربری مناسب در عمل می باشند. در روش پیشنهادی نیازی به استفاده از تجهیزات و آزمون های خاص جهت تشخیص عیوب نبوده و در صورت بروز عیب، در حین عبور خودرو از موانعی با دارا بودن آستانه تحریک الزم همانند سرعت گیرهای جاده، امکان اعالم هشدار به کاربر فراهم و موقعیت و اندازه آن تعیین می شود. طراحی ساختار مناسب و به کارگیری شبکه های عصبی فازی برای شناسایی عیوب نقش مهمی در کاهش خطای ردیابی آنها نشان می دهند. کاهش تعداد و نوع حسگرهای مورداستفاده (فقط شتاب سنج) و عدم اتکا به نرخ داده برداری باال از مزیت های دیگر روش پیشنهادی به شمار رفته، موجب استفاده آسان و کم هزینه می شوند. پس از بررسی میزان اثرگذاری شرایط و عوامل مختلف و انتخاب پارامترهای مناسب در فرایند تشخیص عیوب سیستم تعلیق، صحه گذاری عملکرد و قابلیت پیاده سازی سیستم عیب یاب با طرح و انجام آزمایشات بررسی و نتایج تأیید می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fault Diagnosis Based on Model and Dynamic Behavior of Vehicle Suspension System

نویسندگان [English]

  • mahdi shahab 1
  • Majid Moavenian 2
1 Department of Mechanical Engineering, Ferdowsi University, Mashhad, Iran.
2 Department of Mechanical Engineering, Ferdowsi University, Mashhad, Iran.
چکیده [English]

This research, proposes a new effective and practical method, based on the model and dynamic behavior of vehicles for accurate and fast fault diagnoses of their suspension system. So far, a variety of complicated and impractical algorithms have been presented to identify the suspension system faults. In this method, there is no need to use special equipment and tests to diagnosis the fault, in the event of fault appearance, whenever the vehicle passes over obstacles with a necessary excitation threshold such as a speed bumper, the user is alerted, accordingly the position and size of the fault are determined. Designing a suitable structure and using neural-fuzzy networks to identify faults plays an important role in reducing the error of fault diagnosis. Reducing the number, type of sensors (using only the accelerometer sensor), not relying on high sample rates, low-cost and easy to use are other advantages of the proposed method. The fault diagnosis system performance and implementation ability is verified and confirmed by designing and conducting different experiments.

کلیدواژه‌ها [English]

  • Fault detection and diagnosis
  • Vehicle suspension systems
  • Dynamic behavior
  • Neuro-fuzzy network
[1]           M. Borner, M. Zele, R. Isermann, Comparison Of Different Fault Detection Algorithms For Active Body Control Components: Automotive Suspension System, Proceedings of the American Control Conference, Arlington, VA June 25-27, 2001.
[2]           M. Borner, H. Straky, T. Weispfenning, R. Isermann, Model based fault detection of vehicle suspension and hydraulic brake systems, Mechatronics 12)(2002).999-1010.
[3]           D. Fischer, E. Kaus, R. Isermann, Fault detection for an active vehicle suspension, Proceedings of the American Control Conference , Colorado, 2003.
[4]           P. Pisu, A. Soliman, G. Rizzoni, Vehicle chassis monitoring system, Control Engineering Practice 11(2003) 345-354.
[5]           P.Metallidis, G. Verros, S. Natsiavas, C. Papadimitriou, Fault detection and optimal sensor location in vehicle suspensions, Journal of Vibration and control  9(3-4)(2003): 337-359.
[6]           B. P. Jeppesen, D. Cebon, Analytical Redundancy Techniques for Fault Detection in an Active Heavy Vehicle Suspension, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 42(1-2)(2004) 75-88.
[7]           D. Fischer, R. Isermann, Mechatronic semi-active and active vehicle suspensions, Control Engineering Practice  12(11)(2004) 1353-1367.
[8]           A. Chamseddine, H. Noura, M. Ouladsine, Sensor Fault Detection, Identification and Fault Tolerant Control: Application to Active Suspension, Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA 2006.
[9]           K. Kashi, D. Nissing, D. Kesselgruber, D. Siffker, Fault Diagnosis Of an Active Suspension Control System, IFAC Fault Detection, Supervision and Safety of Technical Processes, Beijing, 2006.
[10]         D. Fischer, M. Borner, J. Schmitt, R. Isermann, Fault detection for lateral and vertical vehicle dynamics, Control Engineering Practice 15(2007).315-324.
[11]         Sh.Azadi, A.Soltani, Fault detection of vehicle suspension system using wavelet analysis, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 47(4)(2009), pp.403-418.
[12]         S. Varrier, R. Morales-Menendez, J. Lozoya-Santos, e. a. D. Hernandez, Fault Detection in Automotive Semi-Active Suspension: Experimental Results, SAE International, 1(2013)1234.
[13]         M. Hamed, B.Tesfa1, M.Aliwan, G.Li, F.Gu1, A.D.Ball, The Influence of Vehicle Tyres Pressure on the Suspension System Response by Applying the Time-Frequency Approach, Proceedings of the 19th International Conference on Automation & Computing, Brunel University, London, UK, 2013.
[14]         G. Wang, S. Yin, Data-driven fault diagnosis for an automobile suspension system by using a clustering based method Journal of the Franklin Institute  351(2014) 3231-3244.
[15]         R. Burdzik, Multidimensional identification of resonances analysis of strongly nonstationary signals, case study: Diagnostic and condition monitoring of vehicle's suspension system, Applied Acoustics, 144(15)(2019).
[16]         F. Baghernezhad, K. Khorasani, Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots, Neurocomputing, 171(1)(2016). 335-346.
[17]         A. Taheri-Garavand, M. Omid, H. Ahmadi, S. S. Mohtasebi, G. M. Carlomagno, Intelligent fault diagnosis of cooling radiator based onthermal image processing and artificial intelligence techniques, Modares Mechanical Engineering, 17( 2)(2017) 240-250 (in Persian فارسی).
[18]         F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills, Information Sciences 259,( 1)(2014). 304-320.
[19]         H. Ziaiefar, M. Amiryan, M. Ghodsi, F. Honarvar, Y. Hojjat, Ultrasonic damage classification in pipes and plates using wavelet transform and SVM, Modares Mechanical Engineering, 15(. 5)(2015)  41-48, (In Persian فارسی).
[20]         M. Shahab, M. Moavenian, The disruptive effect of control units in fault detection of vehicle active suspension system with hydraulic actuator, Modares Mechanical Engineering,  17( 4)(2017) 443-452, (in Persian).
[21]         R. J. Hyndman, A. B. Koehler, Another look at measures of forecast accuracy, International Journal of Forecasting, 22(2006) 679-688.
[22]         Z. Fang, W. Shu, D. Du, B. Xiang, Q. He, K. He, Semi-active Suspension of a Full-vehicle Model based on Double-loop Control, Procedia Engineering 16, pp. 428 – 437, 2011.
[23]         S.-B. Choi, H.-S. Lee, Y.-P. Park, H8 Control Performance of a Full-Vehicle Suspension Featuring Magnetorheological Dampers, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, Vol. 38, No. 5, pp. 341-360, 2002.
[24]         K. F. Martin, M. Moavenian, A Comparison of Fault Detection Filters Using Multiple Inputs, Parallel Observers and Residual Processing, IFAC Proceedings  27( 5) (1994) 527-531.