[1] B.e.T. Skoczeń, Compensation systems for low temperature applications, Springer, Berlin ; New York, 2004.
[2] J. Lemaitre, A continuous damage mechanics model for ductile fracture, Transactions of the ASME. Journal of Engineering Materials and Technology, 107(1) (1985) 83-89.
[3] C. Garion, B. Skoczen, Modeling of Plastic Strain-Induced Martensitic Transformation for Cryogenic Applications, J Appl Mech, 69(6) (2002) 755-762.
[4] G. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metall Mater Trans A, 6(4) (1975) 791-795.
[5] T. Iwamoto, T. Tsuta, Y. Tomita, Investigation on deformation mode dependence of strain-induced martensitic transformation in trip steels and modelling of transformation kinetics, Int J Mech Sci, 40(2) (1998) 173-182.
[6] C. Garion, B. Skoczen, Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures, Int J Damage Mech, 12(4) (2003) 331-356.
[7] C. Garion, B. Skoczeń, S. Sgobba, Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures, Int J Plast, 22(7) (2006) 1234-1264.
[8] K.J. Lee, M.S. Chun, M.H. Kim, J.M. Lee, A new constitutive model of austenitic stainless steel for cryogenic applications, Comput Mater Sci, 46(4) (2009) 1152-1162.
[9] S.R. Bodner, Unified plasticity for engineering applications, Springer Science & Business Media, 2001.
[10] Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, Int J Mech Sci, 37(12) (1995) 1295-1305.
[11] H. Egner, B. Skoczeń, Ductile damage development in two-phase metallic materials applied at cryogenic temperatures, Int J Plast, 26(4) (2010) 488-506.
[12] C.-S. Lee, B.-M. Yoo, M.-H. Kim, J.-M. Lee, Viscoplastic damage model for austenitic stainless steel and its application to the crack propagation problem at cryogenic temperatures, Int J Damage Mech, 22(1) (2012) 95-115.
[13] R. Ortwein, B. Skoczeń, J.P. Tock, Micromechanics based constitutive modeling of martensitic transformation in metastable materials subjected to torsion at cryogenic temperatures, Int J Plast, 59 (2014) 152-179.
[14] R. Ortwein, M. Ryś, B. Skoczeń, Damage evolution in a stainless steel bar undergoing phase transformation under torsion at cryogenic temperatures, Int J Damage Mech, 25(7) (2016) 967-1016.
[15] H. Egner, M. Ryś, Total energy equivalence in constitutive modeling of multidissipative materials, Int J Damage Mech, 26(3) (2017) 417-446.
[16] M. Ryś, B. Skoczeń, Coupled constitutive model of damage affected two-phase continuum, Mechanics of Materials, 115 (2017) 1-15.
[17] J. Lemaitre, J.-L. Chaboche, Aspect phénoménologique de la rupture par endommagement, J Méc Appl, 2(3) (1978).
[18] H.P. Reed, Martensitic Transformations in Fe-Cr-Ni Stainless Steels, in: R.P. Reed, T. Horiuchi (Eds.) Austenitic Steels at Low Temperatures, Springer US, Boston, MA, 1983, pp. 41-67.
[19] A.A. Lebedev, V.V. Kosarchuk, Influence of phase transformations on the mechanical properties of austenitic stainless steels, Int J Plast, 16(7–8) (2000) 749-767.
[20] S. Murakami, Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, Springer Science & Business Media, 2012.
[21] A.A.S.f. Testing, Materials, Standard test methods for tension testing of metallic materials, ASTM international, 2009.
[22] E. ISO, 6892-1. Metallic materials-Tensile testing-Part 3: Method of test at low temperature, International Organization for Standardization, (2015).
[23] H. Ledbetter, Stainless‐steel elastic constants at low temperatures, J Appl Phys, 52(3) (1981) 1587-1589.
[24] M. Naghizadeh, H. Mirzadeh, Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth, Metall Mater Trans A, 47(8) (2016) 4210-4216.
[25] D.R. Bland, The associated flow rule of plasticity, Journal of the Mechanics and Physics of Solids, 6(1) (1957) 71-78.