تحلیل و بررسی یک سیستم جدید تولید همزمان انرژی توسط زیست‌توده به منظور بکارگیری در یک ساختمان با مصرف انرژی صفر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار و عضو هیئت علمی گروه مکانیک- دانشکده فنی- دانشگاه گیلان

2 دانشجوی دکتری مهندسی مکانیک - دانشکده مهندسی مکانیک - دانشگاه گیلان

3 گیلان*دانشکده فنی و مهندسی

چکیده

هدف از تحقیق حاضر پیشنهاد و ارزیابی یک سیستم تولید همزمان جدید برای ساختمان‌های با مصرف انرژی صفر می‌باشد. سیستم ارائه شده شامل گازی‌ساز زیست توده، موتور احتراق داخلی، چیلر جذبی دو اثره لیتیوم بروماید و آب، بویلر پشتیبان تولید آ بگرم، تانک ذخیره گاز، تانک ذخیره آبگرم مصرفی و مبدل‌های حرارتی می‌باشد. در کار حاضر ضمن ارائه یک استراتژی عملکردی برای سیستم پیشنهادی، حساسیت دستیابی به اهداف سیستم )سود خالص سالیانه، میزان تأمین تقاضاهای بار الکتریکی، سرمایش، گرمایش و آب گرم مصرفی ساختمان( به متغیرهایی نظیر ظرفیت موتور، چیلر و بویلر آ بگرم، ساعت روشن شدن موتور و حجم منبع ذخیره آب گرم، ارزیابی می‌گردد. نتایج نشان داد که افزایش توان ورودی موتور سبب کاهش تابع توازن الکتریسیته خواهد شد که می‌تواند به دستیابی به هدف ساختمان با مصرف انرژی صفر کمک کند. با افزایش توان سرمایشی چیلر جذبی در نزدیکی تقاضاهای گرمایشی، سرمایشی ساختمان، می‌توان به بیشترین سود خالص سالیانه ) 4000 دلار( دست یافت. با افزایش توان گرمایشی بویلر و حجم منبع ذخیره آ بگرم تقاضاهای سرمایشی، گرمایشی و آ بگرم مصرفی ساختمان به کلی تأمین شده است. همچنین، با تغییر در ساعت روشن شدن موتور در ساعات افزایش تقاضای الکتریسیته ) 9 تا 11 (، میزان سود سالیانه سیستم  تا 4000 دلار افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Novel Biomass-Driven Cogeneration System for Zero-Energy Buildings

نویسندگان [English]

  • Kourosh Javaherdeh 1
  • Fazel Mohammadikhah 2
  • Javad MahmoudiMehr 3
1 Instructor of Department of Mechanical Engineering, Faculty of Engineering, University of Guilan
2 Phd student of mechanical engineering - faculty of ,mechanical engineering - university of guilan
3 gulian
چکیده [English]

This study proposes and evaluates a new cogeneration system for zero-energy buildings.
The proposed system is comprised of a biomass gasifier, an internal combustion engine, a double-effect
lithium bromide-water absorption chiller, a backup boiler for hot water production, a gas storage tank,
a hot water storage tank, and two heat exchangers. The system is supposed to provide the building with
the electricity, hot water, heating and cooling requirements over the year. Besides presenting a functional
strategy for the proposed system, this study evaluates the sensitivity of the objectives of the system (i.e.,
annual actual benefit) to some main decision variables, including the capacity of engine, chiller and
boiler, the volume of hot water tank, the start-up time of the internal combustion engine. The results
demonstrate that an increase in the input power of the engine helps to achieve the goal of zero-energy
buildings. It is observed that the system is most economical when the cooling capacity of the absorption
chiller approaches the heating and cooling demands of the building. The results also indicate that the
start-up time of the combustion engine would be more influential in the case of high electricity demand
conditions.

کلیدواژه‌ها [English]

  • Biomass
  • Zero energy building
  • Economic analysis
  • Sensitivity analysis
[1] U. Ijaz Dar, I. Sartori, L. Georges, V. Nov, Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid, Energy and Buildings, 69 (2014) 74-84.
[2] Y. Lu, S. Wang, C. Yan, K. Shan, Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings, Energy, 93 (2015) 1595-1606.
[3]  C. Good, I. Andresen, A. Grete Hestnes, Solar energy for net zero energy buildings – A comparison between solar thermal, PV and photovoltaic–thermal (PV/T) systems, Solar Energy, 122 (2015) 986-996.
[4]  O. Sotehi, A. Chaker, C. Maalouf, Hybrid PV/T water solar collector for net zero energy building and freshwater production: A theoretical approach, Desalination, 385 (2016) 1–11.
[5] A. AlAjmi, H. Abou-Ziyan, A. Ghoneim, Achieving annual and monthly net-zero energy of existing building in hot climate, Applied Energy, 165 (2016) 511-521.
[6] J. Hirvonen, G. Kayo, A. Hasan, K. Sirén, Zero energy level and economic potential of small- scale building-integrated PV with different heating systems in Nordic conditions, Applied Energy, 167 (2016) 255-269.
[7]    J. N. Marta, O. Panao, The Overall Renewable Energy Fraction: an alternative performance indicator for evaluating Net Zero Energy Buildings, Energy and Buildings, 127 (2016) 736-747.
[8] L. Shen, X. Pu, Y. Sun, J. Chen, A study on thermoelectric technology application in net zero energy buildings, Energy, 113 (2016) 9-24.
[9]  S. Monteiro Silva, R. Mateus, L. Marques, M. Ramos, M. Almeida, Contribution of the solar systems to the nZEB and ZEB design concept in Portugal – Energy, economics and environmental life cycle analysis, Solar Energy Materials & Solar Cells, 156 (2016) 59-74.
[10] M. Bojic, N. Nikolic, D. Nikolic, J. Skerlic, I. Miletic, Toward a positive-net-energy residential building in Serbian conditions, Applied Energy, 88 (2011) 2407-2419.
[11] G. Almeida Dávi, E. Caamano-Martín, R. Rüther, J. Solano, Energy performance evaluation of  a  net plus-energy residential building with grid- connected photovoltaic system in Brazil, Energy and Buildings, 120 (2016) 19-29.
[12]G. Evola, G. Margani, L. Marletta, Cost-effective design solutions for low-rise residential Net ZEBs in Mediterranean climate, Energy and Buildings, 68 (2014) 7-18.
[13]M. Alirezaei, M. Noori, O. Tatari, Getting to net zero energy building: investigating the role of vehicle to home technology, Energy and Buildings, 13 (2013) 74-85.
[14]S. Cao, Comparison of the energy and environmental impact by integrating a H2 vehicle and an electric vehicle into a zero-energy building, Energy Conversion and Management, 123 (2016) 153 -173.
[15]M. Fiorentini, P. Cooper, Z. Ma, Development and Optimization of an Innovative HVAC System with Integrated PVT and PCM Thermal Storage for a Net-Zero Energy Retrofitted House, Energy and Buildings, 94 (2015) 21-32.
[16]A. Mohamed, A. Hasan, K. Sirén, Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives, Applied Energy, 114 (2014) 385-399.
[17]A. Hassoun, I. Dincer, Development of power system designs for a net zero energy house, Energy and Buildings, 73 (2014) 120-129.
[18]Z. Yu, J. Chen, Y. Sun, G. Zhang, A GA-based system sizing method for net-zero energy buildingsconsidering multi-criteria performance requirements under parameter uncertainties, Energy and Buildings, 129 (2016) 524-534.
[19]M. Hamdy, A. Hasan, K. Siren, A multi-stage optimization method for cost-optimal and nearly- zero-energy building solutions in line with the EPBD-recast 2010, Energy and Buildings, 56 (2013) 189–203
[20]M. Ferrara, E. Fabrizio, J. Virgone, M. Filippi, A simulation-based optimization method for cost- optimal analysis of nearly Zero Energy Buildings, Energy and Buildings, 84 (2014) 442-457.
[21]C. Baglivo, P. Maria Congedo, A. Fazio, D. Laforgia, Multi-objective optimization analysis  for high efficiency external walls of zero energy buildings (ZEB) in the Mediterranean climate, Energy and Buildings, 84 (2014) 483-492.
[22]J. Gao, A. Li, X. Xu, W. Gang, T. Yan, Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings, Renewable Energy, 128 (2018) 337-349.
[23] R. Esperanza González Mahecha, A. F. P. Lucena,
A. Szklo, P. Ferreira, A. Ismael F. Vaz, Optimization model for evaluating on-site renewable technologies with storage in zero/nearly Zero Energy Buildings, Energy and Buildings, 172 (2018) 505-516.
[24]M. Puig-Arnavat, J.C. Bruno, A. Coronas. Modified thermodynamic equilibrium model for biomass gasification: a study of the influence of operating conditions. Energy Fules, 26 (2012) 1385-1394.
[25]S. Jarungthammachote, A. Dutta, Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32 (2007) 1660- 1669.
[26]T.H. Jayah, L. Aye, R.J. Fuller, D.F. Stewart. Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenergy, 25 (2003) 459- 569.
[27]Melgar A, Perrez JF, Laget H, Horillo A. Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag, 48 (2007) 59-67.
[28]M. Borji, S. Ghorbani, K. Atashkari, A. Etemadi, Numerical investigation of integrated biomass gasifcation and plannar solid oxide fuel cell power plant, Amirkabir J. Mech. Eng, 49(1) (2017) 219- 230. (in Persian)
[29]Anukam A, Mamphweli S, Meyer E, Okoh O. Computer simulation of the mass and energy balance during gasification of sugarcane bagasse. Energy, (2014) 1- 9.
[30]S. Khanmohammadi, K. Atashkari, R. Kouhikamali, Performance assessment and multi-objective optimization of a trigeneration system with modified biomass gasification model, Modares Mechanical Engineering, 15 (2015) 209-222. (in Persian)
[31]M. Puig-Arnavat, Performance modelling and validation of biomass gasifiers for trigeneration plants. Tarragona: Universitat Rovira i Virgili; 2011.
[32]  Z.A. Zainal, R. Ali, C.H. Lean, K.N. Seetharamu, Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag, 42 (2001) 1499-1515.
[33] J. Wang, T. Mao, J. Sui, H. Jin, Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas, Energy, 93 (2015) 801-815.
[34]  N. Sekhar Barman, S. Ghosh, S.a De, Gasification of biomass in a fixed bed downdraft gasifier – A realistic model including tar, Bioresource Technology, 107 (2012) 505-511.
[35] J. Wang, K. Yang, Z. Xu, C. Fu, Energy and exergy analyses of an integrated CCHP system with biomass air gasification, Applied Energy, 142 (2015) 317-327.
[36] S. Khanmohammadi, K. Atashkari, R. Kouhikamali, Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier, Applied Thermal Engineering, 91 (2015) 848-859.
[37] C. Woo Park, J. Hee Jeong, Y. Tae Kang, Energy consumption characteristics of an absorption chiller during the partial load operation, International Journal of Refrigeration, 27 (2004) 948–954.
[38]  S. Sanaye, M. Aghaei Meybodi, S. Shokrollahi, Selecting the prime movers and nominal powers  in combined heat and power systems, Applied Thermal Engineering, 28 (2008) 1177–1188.
[39]   S. Sanaye, M. M. Ghafurian, F.e Tavakoli Dastjerd, Applying Relative Net Present or Relative Net Future Worth Benefit and exergy efficiency for optimum selection of a natural gas engine based CCHP system for a hotel building, Journal of Natural Gas Science and Engineering, 34 (2016) 305-317.