خوردگی و ارتعاش: عوامل موثر بر تغییرات جهت‌گیری فاز متخلخل در چدن خاکستری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران.

2 گروه مواد و متالورژی، دانشکده مهندسی مکانیک و انرژی، پردیس فنی و مهندسی شهید عباسپور، دانشگاه شهید بهشتی، تهران، ایران

چکیده

چدن خاکستری به دلیل وجود سیلیسیوم، قابلیت ریخته‌گری بالایی دارد. توانایی بالای ماشین‌کاری قطعات خاص این آلیاژ هستند که سبب کاربرد گسترده آن در صنعت گردیده ریخته شده و میرایی ارتعاش دو خاصیت تقریبا است. استفاده از براده‌های ماشین‌کاری به عنوان ماده اولیه ساخت قطعات، در چند سال اخیر مورد توجه محققان قرارگرفته است. در این پژوهش، از براده ماشین‌کاری چدن خاکستری به عنوان ماده اولیه جهت تولید ساختارهای متخلخل استفاده گردید. ساختارهای متخلخل تولیدی تحت دو فرآیند عمده و مخرب صنعتی یعنی خوردگی و ارتعاش به صورت متوالی و موازی قرار داده شد. به منظور نشان دادن قدرت تخریب و مقایسه این فاکتور در این دو فرآیند، تغییرات جهت‌گیری فاز متخلخل (ناشی از جذب انرژی‌های دو فرآیند مخرب) اندازه گیری گردید. مشاهده گردید بیشترین میزان جذب انرژی که همراه با بیشترین تغییرات در جهت‌گیری فاز متخلخل می‌باشد؛ تابع میزان تخلخل، نوع فرآیند مخرب و ترتیب اعمال خوردگی و ارتعاش می‌باشد. در حالتی که دو فرآیند ارتعاش و خوردگی به صورت متوالی اعمال شود؛ مکانیزم غالب در اعمال تغییر جهت فاز متخلخل، خوردگی می‌باشد؛ که توانایی کمتری در ایجاد تغییرات ریزساختاری دارد. در صورتی که فرآیندهای مخرب به صورت موازی اعمال شود؛ نمونه‌ای با مقدار متوسط تخلخل 42 ،%بیشترین جذب انرژی را داشته و مکانیزم غالب در این حالت، ارتعاش است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Corrosion and Vibration: Effective Factors on Orientation Changes of Porous Phase in Grey Cast Iron

نویسندگان [English]

  • Maryam Akbari 1
  • Asal Hosseini Monazzah 2
1 Materials and Metallurgy Group, Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran,Iran.
2 Materials and Metallurgy Group, Faculty of Mechanical Energy and Engineering, Shahid Beheshti University, A.C., Tehran, Iran
چکیده [English]

Two specific characteristics of grey cast iron, i.e. good machinability, as well as, high vibration damping, results in widespread applications in industry. In this research the grey cast iron powder which was fabricated via machining was utilized as raw material for producing foams. The porous structures were manufactured by powder metallurgy method were subjected under two major industrial destructive processes, i.e., corrosion and vibration, in a continuous and parallel manner. To demonstrate the degradation potency and comparison of these two destructive factors, changes of porous phase orientation as a result of energy absorption was measured. It was found that the amount of energy absorption, which was associated with the most changes in the porous phase orientation, is dependent on porosity volume, the type of destructive processes and the priority of corrosion and vibration. In the case of applying two destructive media successively, the corrosive atmosphere which induced less microstructural changes is the dominant mechanism. If destructive processes were applied in parallel, a sample with a mean value of 42% porosity can absorb the maximum energy, in which vibration is the dominant mechanism for this case.

کلیدواژه‌ها [English]

  • Grey cast iron
  • vibration damping
  • corrosive atmosphere
  • orientation of porous phase
[1]  J.Banhart, Light‐Metal Foams—History of Innovation and Technological Challenges, Advanced Engineering Materials, 15(3) (2013) 82-111.
[2]  R.M.  German,  Powder  metallurgy  and  particulate materials  processing:  the  processes,  materials, products, properties, and applications, Metal powder industries federation Princeton, 2005.
[3] Y.  Atalla,  R.  Panneton,  Inverse  acoustical characterization  of  open  cell  porous  media  using impedance tube measurements, Canadian Acoustics, 33(1) (2005) 11-24.
[4]  O.  Doutres,  Y.  Salissou,  N.  Atalla,  R.  Panneton, Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube, Applied Acoustics, 71(6) (2010) 506509.
[5]  H. Meng, Q. Ao, H. Tang, F. Xin, T. Lu, Dynamic flow resistivity based model for sound absorption of multi-layer  sintered  fibrous  metals,  Science  China Technological Sciences, 57(11) (2014) 2096-2105.
[6]  M.A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid, Journal of Applied Physics, 27(5) (1956) 459-467.
[7]  R. Goodall, Porous metals: Foams and sponges, in: Advances in Powder Metallurgy, Elsevier, 2013, pp. 273-307.
[8]   A. Katayose, R. Yokose, K. Obata, T. Makuta, New fabrication  method  and  properties  of  porous  metals produced by ultrasonic control of microbubble size, Microsystem Technologies, 24(1) (2018) 709-713.
[9]  M.A.  Atwater,  L.N.  Guevara,  K.A.  Darling,  M.A.Tschopp,  Solid  State  Porous  Metal  Production:  A Review  of  the  Capabilities,  Characteristics,  and Challenges, Advanced Engineering Materials,(2018) .6670071
[10]  J. Zhang, R. Perez, E. Lavernia, Documentation of damping  capacity  of  metallic,  ceramic  and  metalmatrix  composite  materials,  Journal  of  Materials Science, 28(9) (1993) 2395-2404.
[11] I.  Ritchie,  Z.-L.  Pan,  High-damping  metals  and alloys,  Metallurgical  Transactions  A,  22(3)  (1991) 607-616.
[12] R. De Batist, High damping materials:mechanisms and applications, Le Journalde Physique Colloques, 44(C9) (1983) C9-39-C39-50.
[13]  A.  Kandeil,  M.  Mourad,  Effect  of  surface  texture on corrosion behaviour of steel, Surface and coatings Technology, 37(2) (1989) 237-250.
[14]  S. Nakahara, Microporosity induced by nucleation and growth processes in crystalline and non-crystalline films, Thin Solid Films, 45(3) (1977) 421-432.
[15]  T.  Remmerswaal, The  influence  of  microstructure onthe corrosion behaviour of ferritic-martensitic steel, master thesis, Delft University of Technology, Delft, 2015.
[16]  L.  da  Silva,  H.  Costa,  Tribological  behavior  of gray cast iron textured by maskless electrochemical texturing, Wear, 376 (2017) 1601-1610.
[17]  A.  Dawood,  S.  Nazirudeen,  New  method  for  the development  of  porous  gray  cast  iron  castings, International Journal of Metalcasting, 3(2) (2009) 43-53.
[18]  H.  Abdollahi,  R.A.  Mahdavinejad,  V.  Zal,  M. Ghambari,  Optimization  of  mechanical  properties of iron-based recycled powder metallurgy parts and investigation of these properties by transverse rupture test,  (2015).
[19]   H. Abdollahi,   R.  Panahi Leavoli, R. Ali Mahdavinejad, V. Zal, Investigation of machinability of green and sintered iron-jet milled cast iron powder metallurgy  parts,  Modares  Mechanical  Engineering, .14(11)(2015)
[20]   C.E.  da  Costa,  W.C.  Zapata,  M.L.  Parucker, Characterization of casting iron powder from recycled swarf, Journal of materials processing technology, 143 (2003) 138-143.
[21]   J.-C. Hung, Y.-C. Tsai, C. Hung, Frictional effect of ultrasonic-vibration  on  upsetting,  Ultrasonics,  )3(64 (2007) 277-284.
[22]    R. Venegas,  C.  Boutin,  O.  Umnova, Acoustics  of multiscale  sorptive  porous  materials,  Physics  of Fluids, 29(8) (2017) 082006.
[23]    Z. Liu, M. Fard, J.L. Davy, Acoustic properties of the porous material in a car cabin model, in:  Proc 23rd International Congress on Sound and Vibration, 2016, pp. 10-14.
[24]   M.I.  Ab  Kadir,  M.S.  Mustapa,  N.A.  Latif,  A.S.Mahdi,  Microstructural  Analysis  and  Mechanical Properties  of  Direct  Recycling  Aluminium  Chips AA6061/Al  Powder  Fabricated  by  Uniaxial  Cold Compaction  Technique,  Procedia  Engineering,  184 (2017) 687-694.
[25]  K.  Mahmood,  W.U.H.  Syed,  A.J.  Pinkerton, Innovative reconsolidation of carbon steel machining swarf by laser metal deposition, Optics and lasers in engineering, 49(2) (2011) 240-247.
[26]  M.E. Shaibani, N. Eshraghi, M. Ghambari, Sintering of  grey  cast  iron  powder  recycled  via  jet  milling, Materials & Design, 47 (2013) 174-178.
[27]  E.  Androsik,  G.  Dubrovskaya,  I.  Kundikov,  I. Potapnev,  Optimum  conditions  for  the  liquid-phase sintering  of  parts  from  ground  cast-iron  swarf  and iron powder, Powder Metallurgy and Metal Ceramics, 14(5) (1975) 383-386.
[28] J.K.  Sinha,  Significance  of  vibration  diagnosis of  rotating  machines  during  installation  and commissioning:  a  summary  of  few  cases,  Noise  & Vibration Worldwide, 37(5) (2006) 17-27.
[29] J.W.a.  Sons,  THE  CORROSIVE  BEHAVIOR OF  NON-FERROUS  METALS  IN  SEA  WATER, American  Society  for  Naval  Engineering,73(2)(1961)187-394.
[30]  M. Ghambari, M.E. Shaibani, N. Eshraghi, Production of grey cast iron powder via target jet milling, Powder Technology, 221 (2012) 318-324.
[31]    B. Yan, W. Shi, C. Hua, J. Liu, D. Dong, J. Chen, Vibration  damage  mechanism  analysis  on  rotor  of diesel generating set with rigid coupling, in:Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012071.
[32] J. Švarc, T. Binar, P. Dostál, M. Černý, J. Tippner, The Influence of Corrosion Attack on Grey Cast Iron Brittle-Fracture  Behaviour  and  Its  Impact  on  the Material Life Cycle, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(4) (2017) 1295-1301.
[33]   R. Yue, Q.  Zhang,  Changes  in  Pore  Structures  of Porous Beds When Subjected to Vertical Vibration,  KONA Powder and Particle Journal, 34 (2017) 224233.
[34]  A. Beltzer, The influence of porosity on vibrations of elastic solids, Journal of Sound and Vibration, 63(4) (1979) 491-498.
[35] X.  Wang,  Porous  metal  absorbers  for  underwater sound,  The  Journal  of  the  Acoustical  Society  of America, 122(5) (2007) 2626-2635.
[36] Z. Abdullah, A. Ismail, S. Ahmad, The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel, in:  Journal of Physics: Conference Series, IOP Publishing, 2017, pp. 012013.
[37]  E. Aghion, Y. Perez, Effects of porosity on corrosion resistance  of  Mg  alloy  foam  produced  by  powder metallurgy technology, Materials Characterization, 96 (2014) 78-83.
[38] Y.-H.  Li,  G.-B.  Rao,  L.-J.  Rong,  Y.-Y.  Li,  The influence of porosity on corrosion characteristics of porous NiTi alloy in simulated body fluid, Materials Letters, 57(2) (2002) 448-451.
[39] W.-q.  Zou,  Z.-g.  Zhang,  H.  Yang,  W.  Li,  Effect of  vibration  frequency  on  microstructure  and performance of high chromium cast iron prepared by lost foam casting, China Foundry, 13(4) (2016) 248.552
[40] W. Jiang, X. Chen, B. Wang, Z. Fan, H. Wu, Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy  obtained  by  expendable  pattern  shell  casting, The International Journal of Advanced Manufacturing Technology, 83(1-4) (2016) 167-175.
[41] L.  Qingmei,  Z. Yong,  S. Yaoling,  Q.  Feipeng,  Z. Qijie, Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel, Materials & design, 28(6) (2007) 1949-1952.
[42] K. Teh, C. Huang, The effects of fibre orientation on free vibrations of composite beams, Journal of Sound and Vibration, 69(2) (1980) 327-337.
[43]  T.H. Orem, Influence of crystallographic orientation on the  corrosion  rate  of  aluminum  in  acids  and alkalies, Journal of Research of the National Bureau of Standards, 58(3) (1957) 157.
[44]   H.  Jasim,  Investigating  the  effect  of  vibration  on corrosion rate of crude oil storage tanks, Materials and Corrosion, 67(9) (2016) 988-993.
[45]  J.O. Olawale, J.K. Odusote, A.B. Rabiu, E.O. Ochapa, Evaluation of corrosion behaviour of grey cast iron and low alloy steel in cocoa liquor and well water, Journal  of  Minerals  and  Materials  Characterization and Engineering, 1(2) (2013) 44-48.