[1] Koizumi, M ,“FGM activities in Japan”, Composite part B, 28: pp. 1-4, 1997.
[2] Abrate, S ,“Functionally graded plates behave like homogeneous plates”, Composite Part B-Eng, 39: pp. 151-158, 2008.
[3] Woo, J., Meguid, S. A. and Ong, L. S, “Nonlinear free vibration behavior of functionally graded plates”, Journal of Sound and Vibration, 289: pp. 595-611, 2006.
[4] Cheng, Z. Q. and Batra, R. C, “Deflection relationships between the homogeneous Kirchhoff plate theory and different functionally graded plate theories”, Arch Mech, 52: pp. 143-158, 2000.
[5] Hosseini-Hashemi, Sh., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M ,“Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory”, Applied Mathematical Modeling, 34: pp.1276-1291, 2010.
[6] Pradyumna, S. and Bandyopadhyay, J. N. “Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation”, Journal of Sound and Vibration, 318: pp. 176-192, 2008.
[7] Reddy, J. N. ,“Analysis of functionally graded plates”, International Journal of Numerical Methods in Engineering, 47: pp. 663-684, 2000.
[8] Roque, C. M. C., Ferreira, A. J. M. and Jorge, R. M. N. ,“A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory”, Journal of Sound and Vibration, 200: pp. 1048-1070, 2007.
[9] Talha, M. and Singh, B. N. ,“Static response and free vibration analysis of FGM plates using higher order shear deformation theory”, Applied Mathematical Modeling, 34: pp. 3991-4011, 2010.
[10] Sun, D. and Song-Nan, L. ,“Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory”, Composite Structures, 93: pp. 1474-1484, 2011.
[11] Shimpi, R.. P. ,“Refined plate theory and its variants”, AIAA J,40:pp. 137-46,2002.
[12] Mechab, I., Ait Atmane, H., Tounsi, A., Belhadj, H. and Adda bedia, E. A. ,“A two variable refined plate theory for bending of functionally graded plates”, Acta Mechanics, 6: pp. 941, 2010.
[13] Benachour, A., Tahar, H. D., Ait Atmane, H., Tounsi, A. and Ahmed, M. S. ,“A four variable refined plate theory for free vibrations of functionally graded plates whit arbitrary gradient”, Composite: Part B, 42: pp. 1386-1394, 2011.
[14] Thai, H. T. and Choi, D. H. ,“A refined plate theory for functionally graded plates resting on elastic foundation”, Composite Science and Technology, 71: pp. 1850-1858, 2011.
[15] Ambartsumian, S. A., “On the theory of bending plates”, Izgiba anizotropnykh plastinok pologikh obolochek AN SSSR,
5: pp. 69-77, 1958.
[16] Kaczkowski.Z. ,“Plates-statistical calculations”, Warsaw: Arkady, 1968.
[17] Panc, V., “Theories of elastic plates”, Springer, Prague Academia, 1975.
[18] Reissner, E. ,“On transverse bending of plates including the effects of transverse shear deformation”, International Journal of Solids and Structures, 25: pp. 495-502,1975.
[19] Levinson, M. ,“An accurate, simple theory of the statics and dynamics of elastic plates”, Mechanics Research Communications. 7: pp. 343-350, 1980.
[20] Murthy, M. V. V. ,“An improved transverse shear deformation theory for laminated anisotropic plates”, NASA Technical Paper, 1981.
[21] Reddy, J. N. ,“A simple higher-order theory for laminated composite plates”, Journal of Applied Mechanics, Trans ASME. 51: pp. 745-52, 1984
[22] Soldatos, K. P. ,“A transverse shear deformation theory for homogeneous monoclinic plates”, Acta Mechanics, 94: pp. 195-200, 1992.
[23] Karma, M., Afaq, K.S. and Mitsou, S., “Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity”, International Journal of Solids and Structures. 40: pp. 1525-46, 2003.
[24] El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda.Bedia, E. A. ,“A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate”, International Journal of Mechanical Sciences, 53: pp. 237-247, 2011.
[25] Mantri, J. L., Oktem, A. S. and Guedes Soares, C. ,“A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates”, International Journal of Mechanical Sciences, 49: pp. 43-53, 2012.
[26] Matsunaga, H. ,“Stress analysis of functionally graded plates subjected to thermal and mechanical loadings”, Composite Structures, 87: pp. 344-357, 2009.
[27] Hosseini-Hashemi, Sh., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. ,“Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory”, Applied Mathematical Modeling, 35: pp. 1276-1291, 2010.