[1] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy and buildings, 40(3) (2008) 394-398.
[2] J. Gagan, K. Śmierciew, M. Łukaszuk, D. Butrymowicz, Investigations of thermal performance of ejection refrigeration system driven by low grade heat, Applied Thermal Engineering, 130 (2018) 1121-1138.
[3] K. Ullah, R. Saidur, H. Ping, R. Akikur, N. Shuvo, A review of solar thermal refrigeration and cooling methods, Renewable and Sustainable Energy Reviews, 24 (2013) 499-513.
[4]I. Sarbu, C. Sebarchievici, Review of solar refrigeration and cooling systems, Energy and Buildings, 67 (2013) 286-297.
[5] S. He, Y. Li, R. Wang, Progress of mathematical modeling on ejectors, Renewable and Sustainable Energy Reviews, 13(8) (2009) 1760-1780.
[6] M. Hamzaoui, H. Nesreddine, Z. Aidoun, M. Balistrou, Experimental study of a low grade heat driven ejector cooling system using the working fluid R245fa, International Journal of Refrigeration, 86 (2018) 388- 400.
[7] G. Besagni, R. Mereu, F. Inzoli, Ejector refrigeration: A comprehensive review, Renewable and Sustainable Energy Reviews, 53 (2016) 373-407.
[8] Y. Bartosiewicz, Z. Aidoun, P. Desevaux, Y. Mercadier, Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, 26(1) (2005) 56-70.
[9] A. Hakkaki-Fard, Z. Aidoun, M. Ouzzane, A computational methodology for ejector design and performance maximisation, Energy Conversion and Management, 105 (2015) 1291-1302.
[10] W. Fu, Y. Li, Z. Liu, H. Wu, T. Wu, Numerical study for the influences of primary nozzle on steam ejector performance, Applied Thermal Engineering, 106 (2016) 1148-1156.
[11] N. Ruangtrakoon, T. Thongtip, S. Aphornratana, T. Sriveerakul, CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle, International Journal of Thermal Sciences, 63 (2013) 133-145.
[12] L. Wang, J. Yan, C. Wang, X. Li, Numerical study on optimization of ejector primary nozzle geometries, International Journal of Refrigeration, 76 (2017) 219- 229.
[13] M.S. Lee, H. Lee, Y. Hwang, R. Radermacher, H.M. Jeong, Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model, Applied Thermal Engineering, 109 (2016) 272-282.
[14] M. Palacz, J. Smolka, W. Kus, A. Fic, Z. Bulinski, A.J. Nowak, K. Banasiak, A. Hafner, CFD-based shape optimisation of a CO2 two-phase ejector mixing section, Applied Thermal Engineering, 95 (2016) 62-69.
[15] J.A. Expósito Carrillo, F.J. Sánchez de La Flor, J.M. Salmerón Lissén, Single-phase ejector geometry optimisation by means of a multi-objective evolutionary algorithm and a surrogate CFD model, Energy, 164 (2018) 46-64.
[16] R.K. McGovern, G. Prakash Narayan, J.H. Lienhard, Analysis of reversible ejectors and definition of an ejector efficiency, International Journal of Thermal Sciences, 54 (2012) 153-166.
[17] S. Varga, P.M.S. Lebre, A.C. Oliveira, CFD study of a variable area ratio ejector using R600a and R152a refrigerants, International Journal of Refrigeration, 36(1) (2013) 157-165.
[18] ANSYS FLUENT Theory Guide, ANSYS Inc. , Canonburg, PA, 2015.
[19] ANSYS FLUENT user’s guide ANSYS Inc., Canonburg, PA, 2015.
[20] S. Croquer, S. Poncet, Z. Aidoun, Turbulence modeling of a single-phase R134a supersonic ejector. Part 1: Numerical benchmark, International Journal of Refrigeration, 61 (2016) 140-152.
[21] M. Yazdani, A.A. Alahyari, T.D. Radcliff, Numerical modeling of two-phase supersonic ejectors for work- recovery applications, International Journal of Heat and Mass Transfer, 55(21-22) (2012) 5744-5753.
[22] Y. Zhu, P. Jiang, Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance, International Journal of Refrigeration, 40 (2014) 31-42.
[23] C. Li, Y.Z. Li, Investigation of entrainment behavior and characteristics of gas–liquid ejectors based on CFD simulation, Chemical Engineering Science, 66(3) (2011) 405-416.
[24] K. Pianthong, W. Seehanam, M. Behnia, T. Sriveerakul, S. Aphornratana, Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique, Energy Conversion and Management, 48(9) (2007) 2556-2564.
[25] A. Hakkaki-Fard, M. Poirier, Z. Aidoun, M. Ouzzane, D. Giguère, An experimental study of ejectors supported by CFD, in: Refrigeration Science and Technology, 2015, pp. 2030-2037.
[26] A. Hemidi, F. Henry, S. Leclaire, J.M. Seynhaeve, Y. Bartosiewicz, CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two- phase operation, Applied Thermal Engineering, 29(8-9) (2009) 1523-1531.
[27] L. Su, CFD Simulation and Shape Optimization of Supersonic Ejectors for Refrigeration and Desalination Applications, Washington University in St. Louis, 2015
[28]F. Aligolzadeh, A. Hakkaki-Fard, Studying the effect of equation of state and turbulence modeling on numerical simulation of a supersonic ejector, in: 17'th Conference On Fluid Dynamics, Shahrood University of Technology, Shahrood, Iran, 2017.