[1] M. Firoozzadeh, A.H. Shiravi, M. Shafiee, Experimental Study on Photovoltaic Cooling System Integrated With Carbon Nano Fluid, Journal of Solar Energy Research, 3(4) (2018) 287-292.
[2]O. Rejeb, M. Sardarabadi, C. Ménézo, M. Passandideh-Fard, M.H. Dhaou, A. Jemni, Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system, Energy Conversion and Management, 110 (2016) 367-377.
[3]M. Sardarabadi, M. Passandideh-Fard, M.-J. Maghrebi, M. Ghazikhani, Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems, Solar Energy Materials and Solar Cells, 161 (2017) 62-69.
[4]M. Sardarabadi, M. Passandideh-Fard, S.Z. Heris, Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units), Energy, 66 (2014) 264-272.
[5]M. Ghadiri, M. Sardarabadi, M. Pasandideh- fard, A.J. Moghadam, Experimental investigation of a PVT system performance using nano ferrofluids, Energy Conversion and Management, 103 (2015) 468-476.
[6] J.J. Michael, S. Iniyan, Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid, Solar Energy, 119 (2015) 439-451.
[7] H. Bahaidarah, A. Subhan, P. Gandhidasan, S. Rehman, Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, Energy, 59 (2013) 445-453.
[8] S. Krauter, Increased electrical yield via water flow over the front of photovoltaic panels, Solar Energy Materials and Solar Cells, 82(1) (2004) 131-137.
[9] A.N. Kane, V. Verma, Performance enhancement of building integrated photovoltaic module using thermoelectric cooling, International Journal of Renewable Energy Research (IJRER), (2)(2013) 320-324.
[10] J.-S. Choi, J.-S. Ko, D.-H. Chung, Development of a thermoelectric cooling system for a high efficiency BIPV module, Journal of Power Electronics, 10(2) (2010) 187-193.
[11] A. Makki, S. Omer, Y. Su, H. Sabir, Numerical investigation of heat pipe-based photovoltaic– thermoelectric generator (HP-PV/TEG) hybrid system, Energy conversion and management, 112 (2016) 274-287.
[12]S.A. Kalogirou, Y. Tripanagnostopoulos, Hybrid PV/T solar systems for domestic hot water and electricity production, Energy conversion and management, 47(18-19) (2006) 3368-3382.
[13] M. Chandrasekar, S. Rajkumar, D. Valavan, A review on the thermal regulation techniques for non integrated flat PV modules mounted on building top, Energy and Buildings, 86 (2015) 692-697.
[14] G. Tiwari, R. Mishra, S. Solanki, Photovoltaic modules and their applications: a review on thermal modelling, Applied energy, 88(7) (2011) 2287-2304.
[15] P. Atkin, M.M. Farid, Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins, Solar Energy, 114 (2015) 217-228.
[16] C.J. Smith, P.M. Forster, R. Crook, Global analysis of photovoltaic energy output enhanced by phase change material cooling, Applied Energy, 126 (2014) 21-28.
[17] Y.S. Indartono, A. Suwono, F.Y. Pratama, Improving photovoltaics performance by using yellow petroleum jelly as phase change material, International Journal of Low-Carbon Technologies, 11(3) (2016) 333-337.
[18] R. Rajaram, D. Sivakumar, Experimental investigation of solar panel cooling by the use of phase change material, Journal of Chemical and Pharmaceutical Sciences ISSN, 974 (2015) 2115.
[19] A. Hasan, S. McCormack, M. Huang, B. Norton, Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics, Solar Energy, 84(9) (2010) 1601-1612.
[20] H. Mahamudul, M. Silakhori, I.H. Metselaar, S. Ahmad, S. Mekhilef, Development of a temperature regulated photovoltaic module using phase change material for Malaysian weather condition, the journal Optoelectronics and Advanced Materials- Rapid Communications, 8 (2014) 1243-1245.
[21] S. Sharma, N. Sellami, A. Tahir, K. Reddy, T.K. Mallick, Enhancing the performance of BICPV systems using phase change materials, in: AIP Conference Proceedings, AIP Publishing, 2015, pp. 110003.
[22]E.M. Alawadhi, Thermal analysis of a building brick containing phase change material, Energy and Buildings, 40(3) (2008) 351-357.
[23]K. Nagano, T. Mochida, S. Takeda, R. Domański, M. Rebow, Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems, Applied thermal engineering, 23(2) (2003) 229-241.
[24]I. Dincer, M. Rosen, Thermal energy storage: systems and applications, John Wiley & Sons, 2002.
[25]G.A. Lane, Low temperature heat storage with phase change materials, International Journal of Ambient Energy, 1(3) (1980) 155-168.
[26]D. Zhou, C.-Y. Zhao, Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Applied energy, 92 (2012) 593-605.
[27]R. Foster, M. Ghassemi, A. Cota, Solar energy: renewable energy and the environment, CRC Press, 2009.
[28]S. Chandel, T. Agarwal, Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems, Renewable and Sustainable Energy Reviews, 73 (2017) 1342-1351.